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Preface

Parallel robots, also sometimes called hexapods or Parallel Kinematic Ma-
chines (PKM), are closed-loop mechanisms presenting very good perfor-
mances in terms of accuracy, rigidity and ability to manipulate large loads.
They are been used in a large number of applications ranging from as-
tronomy to flight simulators, and are becoming increasingly popular in the
machine-tool industry. This book intends to present a comprehensive syn-
thesis of the latest results on the possible mechanical architectures, on their
analysis and design and on possible uses of this type of mechanism. It is
a completely updated version of the first edition which was published in
2000.

In a quickly moving domain a book presents the fundamentals of a
domain but cannot pretend to remain up to date in term of references
and possible applications. Two Web sites will allow a follow-up in term of
evolution:
− www-sop.inria.fr/coprin/equipe/merlet/merlet eng.html: this

site provides an extensive, updated bibliographic data base together
with open problems and possible mechanical architectures of parallel
robot. It will be called the references Web page in this book.

− www.parallemic.org: this site maintained by my friend Ilian Bonev
presents interesting reviews, web links and up-to-date information on
parallel robots

This book is intended to be used by students, researchers and engineers:
− for students there are over 140 exercises and problems1

− for engineers there are many practical results and applications. Most of
the experimental considerations presented in this book are the result
of the development of our own prototypes (or for which we have got a
design contract) and of numerous discussions with others researchers
and industrial partners who have developed parallel robots.

− for researchers a comprehensive list of research topics is addressed to-
gether with an important list of references (about 45 % of the references
are posterior to the first edition)

As far as references are concerned, I have been confronted by difficult
choices: there are numerous references in this field (close to 2000 refer-
ences may be found in the references Web page at the date of publication

1Solutions of the exercises are available at
www-sop.inria.fr/coprin/equipe/merlet/Solutions/exo.html
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of this book) and clearly not all of them can be mentioned. I have favored
journal papers over conference papers as they are more easily available. For
authors having made a large number of contributions in a given topic I
will often only reference their latest related work and indicate by a ∗ that
their additional references on the same topic will be found in the references
Web page. Then I have tried to include references providing all the possible
viewpoints for the problem at hand. Patents will, in general, not be refer-
enced as they are available by conventional means. Even after these steps,
the number of references far exceeded what was reasonable for a textbook,
so drastic choices had to be made. In the first edition most of the authors
were referenced in the index: for lack of space this is no longer the case,
but their works can be found in the references Web page.

Web addresses of companies and laboratories are rapidly changing but
many of them are however indicated in this book in the following manner� HS

which indicates that a label HS followed by the corresponding web link will
be found at www-sop.inria.fr/coprin/equipe/merlet/Web

The codes of some algorithms presented in this book are available by
anonymous ftp access2. I hope that the unsolved problems presented at the
end of each chapter will be a source of inspiration for research.

This book is organized so that the abstract at the beginning of each
chapter will be, in general, sufficient to understand the problems addressed
in the chapter.

The fundamentals of a robotics book involve many scientific domains
such as kinematics, dynamics, control theory . . .. Elegant and powerful
theorems may be established by using only a theoretical approach, which
is absolutely necessary. But at some point we have to get numerical results
and, given the complexity of the robotics calculation, computers will be
involved. They can be used at an early stage with symbolic computation to
facilitate the manipulation of the complex expressions we will have to deal
with, or at the last stage to get numerical results which justify an appendix
on system solving. But in many case current computers are not perfect
(and sometime they are completely wrong ! see the interval appendix), a
point that is often ignored and that may have severe consequences (for
example in medical applications). A constant preoccupation we will have
in this book is to present algorithms whose results may be certified, i.e. that
are presented with error bounds that will indicate how much confidence we
may have in them. This justifies the appendix devoted to interval analysis,
a not so well-known method, that allows the development of such certified
algorithms.

2ftp address: ftp-sop.inria.fr, directory coprin

PREFACExvi



Acknowledgments

For the technical support received during the writing of this book, I am
indebted to many people. As it involves knowledge in mechanism theory,
geometry, symbolic computation, computer science, control theory . . . nu-
merous people at INRIA and at other laboratories have contributed to this
work. A list of their names could not be presented here but they are all
deeply acknowledged, with very special thoughts for my INRIA colleagues
and friends Manuel Bronstein, which die recently, and Isabelle Attali, who
disappeared tragically with her two sons in Sri-Lanka during the tragedy
of December 2004.

I want also to dedicate this book to the late Claude Reboulet, a pioneer
in the study of parallel robots. Claude was a model for me, as for all of my
colleagues, and we are all missing him.

We must also remember the late J. Duffy, K. Hunt and L-W. Tsai: beside
being prominent kinematicians, they were enjoyable people and they played
a major role in the Computational Kinematics community.

C. Gosselin, professor at University Laval, Québec, my co-author of
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Notation

In this book, vectors will be denoted in bold font, matrices in capital slanted
bold font and other mathematical quantities in italic font. For example
AX = λb indicates that the vector X multiplied by the matrix A should be
equal to the vector b multiplied by the scalar λ. For the sake of readability,
we also try to avoid the use of the transpose in the equations when there
is no ambiguity. For example the dot product of two vectors U,V will be
denoted U.V instead of the classical UT.V.

The following notation and definitions will be used:

− × : cross-product of 2 vectors
− . : scalar product of 2 vectors
− ȧ : time-derivative of a
− X : generalized coordinates of the robot in vector form
− Θ : joint coordinates of the robot in vector form
− Θa : actuated joint coordinates of the robot in vector form
− Θp : passive joint coordinates of the robot in vector form
− ρi,Θi : usually actuated joint coordinate of link i
− ρmin, ρmax: minimal and maximal value of a joint coordinate
− Ai : center of the joint of link i, attached to the base
− xai , yai , zai : coordinates of Ai in the reference frame
− Bi : center of the joint of link i, attached to the end-effector
− xbi

, ybi
, zbi

: coordinates of Bi in the moving frame
− O : origin of the reference frame
− (O,x, y, z) : reference frame
− C : origin of the moving frame. It will be used as a pose parameter for

the end-effector
− xc, yc, zc : coordinates of C in the reference frame
− (C, xr, yr, zr) : moving frame
− ψ, θ, φ : Euler angles defining the orientation of the end-effector. These

angles are defined in the following manner: starting from the reference
frame, we obtain the moving frame by first rotating around the z axis
through an angle ψ, then by rotating around the new x axis through
an angle θ and finally by rotating around the new z axis through an
angle φ.

− R : rotation matrix from the moving frame to the reference frame
− J : jacobian matrix of the robot
− JT : transpose of the jacobian matrix
− Ω : angular velocity vector of the end-effector
− V : cartesian velocity vector of the end-effector
− W : velocity vector of the end-effector, constituted of V and Ω, also

called the velocity twist
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− τ : actuated joints force/torque in vector form
− F : force/torque vector applied to the end-effector. Unless otherwise

mentioned the torque will be calculated with respect to C.
− annular region: a region in the plane delimited by two concentric circles

defined as the set of points that lie in the larger circle and not in the
smaller one

− C: cylindrical joint
− H: helical joint
− P : prismatic joint
− Pa: parallelogram
− R: revolute joint
− S: ball-and-socket joint
− U : universal joint
− d.o.f.: degrees of freedom
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CHAPTER 1

Introduction

Mechanical systems that allow a rigid body (here called an end-effector)
to move with respect to a fixed base, play a very important role in nu-
merous applications. A rigid body in space can move in various ways, in
translation or rotary motion. These are called its degrees of freedom. The
total number of degrees of freedom of a rigid body in space cannot ex-
ceed 6 (for example three translatory motions along mutually orthogonal
axes, and three rotary motions around these axis). The position and the
orientation of the end-effector (here called its pose) can be described by
its generalized coordinates; these are usually the coordinates of a specific
point of the end-effector and the angles that define its orientation, but may
be any other set of parameters that allows one to define uniquely the pose
of the end-effector. As soon as it is possible to control several degrees of
freedom of the end-effector via a mechanical system, this system can be
called a robot.

The last few years have witnessed an important development in the use
of robots in the industrial world, mainly due to their flexibility. However, the
mechanical architecture of the most common robots does not seem adapted
to certain tasks. Other types of architecture have therefore recently been
studied, and are being more and more regularly used within the industrial
world. This is so for the parallel robots that we will study in this book.

1.1. Characteristics of classical robots

Currently, most existing manipulators present a decidedly anthropomorphic
character, usually strongly resembling a human arm. They are constituted
of a succession of rigid bodies, each of them being linked to its predecessor
and its successor by a one-degree-of-freedom joint, for example allowing
the rotation of a rigid body around an axis , or the translatory motion of a
rigid body. This architecture will be called a serial robot with analogy to
electrical systems. An example of a serial mechanism is the spherical robot,
where a succession of segments goes from the base to the end-effector, each
segment being linked to its successor by a revolute joint. If each of the n
joints is actuated, it will usually be possible to control n degrees of freedom

1



2 CHAPTER 1

of the end-effector. The serial robot Scara represents a good architectural
example. It allows the control of 4 degrees of freedom from the end-effector
(figure 1.1). Tables 1.1 and 1.2 present the general characteristics of robots

Figure 1.1. The ”Scara” robot

of the Scara type and of industrial spherical robots with 6 degrees of free-
dom.

Robot d.o.f. mass load Repeatability load
mass

Adept I800 4 34 5.5 ± 0.02 0.1617

Adept 1XL 4 265 12 ± 0.025 0.0452

Adept 3XL 4 266 25 ± 0.038 0.0939

Epson E2C251 4 14 3 ± 0.01 0.21442

Epson E2S45x 4 20 5 ± 0.015 0.25

Epson E2H853 4 37 2 ± 0.025 0.054

Seiko EC250 4 14 3 ± 0.01 0.21438

Seiko EH850 4 43 10 ± 0.025 0.2325

Toshiba SR-504HSP 4 38 2 ± 0.02 0.0526

TABLE 1.1. Characteristics of industrial manipulators (Scara
type, mass of the robot and load capacity in kg, repeatability
in mm, according to the manufacturers notice).

These two tables emphasize several interesting points, of which the first
is the value of the ratio of the load capacity/robot mass. For a spherical
manipulator with 6 degrees of freedom, this ratio is less than 0.15. There-
fore, for a transported mass of about 500 kg, the manipulator mass would
be about 3330 kg. Note that compared to the first edition of this book
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Robot mass load Repeatability load
mass

ABB IRB 140T 98 5 ± 0.03 0.051

ABB IRB 2400L 380 7 ± 0.06 0.01842

ABB IRB 4400/45 980 45 ± 0.1 0.04591

ABB IRB 6400R/3.0-100 1600 100 ± 0.15 0.0625

Fanuc Arc Mate 100i 138 6 ± 0.08 0.04347

Fanuc Arc Mate 120i 370 16 ± 0.1 0.04324

Fanuc M420iA 620 40 ± 0.5 0.064516

Fanuc R-2000iA 165F 1210 165 ± 0.3 0.13636

Fanuc S-900iB/200 1970 200 ± 0.5 0.101523

Kuka KR 6 235 6 ± 0.1 0.02553

Kuka KR 60-3 665 60 ± 0.2 0.09022

Kuka KR 100 1155 100 ± 0.15 0.08658

TABLE 1.2. Characteristics of industrial manipulators
(spherical type, mass of the robot and load capacity in kg,
repeatability in mm, according to the manufacturers notice).

there has been a relatively large improvement in the ratio load/mass with
an average value going from 0.035 to 0.064.

For robots of the Scara type, this ratio is in general better, in particular
for the so-called direct-drive robots, without a reduction gear between the
motors and the joints. However, it is always less than 0.25 for heavy loads.
For a load capacity of 500 kg the robot mass will thus be at least 2000 kg.
Note that compared to the first 2000 edition of this book there has been
an improvement in the ratio load/mass with an average value going from
0.06846 to 0.08547.

The second noteworthy point concerns the positioning accuracy, for
which there are two distinct concepts: absolute accuracy, defined as the
distance between the desired and the actual position of the end-effector,
and repeatability, which is the maximum distance between two positions of
the end-effector reached for the same desired pose from different starting
positions. The accuracy values given by the manufacturers generally indi-
cate repeatability, which is far better than absolute accuracy, even though
users are interested mostly in absolute accuracy. Tables 1.1, 1.2 show us that
even repeatability may even be insufficient for certain tasks. As for absolute
accuracy, it is conditioned by several factors: accuracy of the manipulator
internal sensors (the sensors that are used to measure the joint coordinates
and to control the robot motions), clearance in the drives, flexure of the
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links, quality of the geometric realization (for example, perpendicularity or
parallelism between successive rotation axes). It is generally accepted that,
in most cases, the absolute accuracy of a serial robot is poor.

The low transportable load and poor accuracy are both inherent in the
mechanical architecture of existing manipulators, and in particular of the
serial disposition of the links. Each of them has to support the weight of the
segments following it in addition to the load: they are therefore all subject
to large flexure torques, which means they must be stiffened, and thus
become heavier. Positioning accuracy obviously depends on the flexural
deformations that are not measured by the robot internal sensors. Moreover
the links magnify errors: a small measurement error in the internal sensors
of the first one or two links will quickly lead to a large error in the position
of the end-effector. For example, for a one meter long arm made up of just
one revolute joint, a measurement error of 0.06 degrees leads to an error
of 1 mm in the position of the end-effector. The presence of a drive with a
reduction gear also induces a backlash which leads to inaccuracy.

The violation of the assumed geometric constraints between the axes of
the links also constitutes an important source of positioning errors. A slight
perpendicularity error between the first two axes of a spherical manipulator
will lead to errors in all vertical motions that, given the amplitude of the
motions, must be taken into account. Note that the successive positions of
the links, together with the necessity of stiffening them, imply that the mov-
ing parts of the robot will have a significant mass. As a consequence, during
high velocity motions, the manipulator experiences inertia, centrifugal and
Coriolis forces that make the control of the robot complex.

Serial robots operate under the action of two kind of forces: inertia and
friction. These forces have different scales: inertia forces essentially vary
with the square of the lengths of the links; friction forces are relatively un-
affected by such dimensions. This means that one cannot design a micro
serial robot simply by scaling down a larger version; under such scaling,
the inertia forces are reduced while the friction forces remain relatively un-
changed. We conclude that serial robots are inappropriate for tasks requir-
ing either the manipulation of heavy loads, or a good positioning accuracy,
or to work at different scales.

1.2. Other types of architecture

In order to introduce other types of mechanical architectures for robots, we
present a few formal notions that will allow us to make a clear distinction
between the key elements which characterize robots. These elements are
taken from C. Gosselin (186). For each link of a manipulator, the connec-
tion degree is the number of rigid bodies attached to this link by a joint.
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Simple kinematic chains are then defined as being those in which each
member possesses a connection degree that is less than or equal to 2. Serial
manipulators may then be defined as simple kinematic chains for which all
the connection degrees are 2, except for two of them, the base and the end-
effector, with connection degree 1. Such a chain is also called an open-loop
kinematic chain.

A closed-loop kinematic chain is obtained when one of the links, but not
the base, possesses a connection degree greater than or equal to 3. These
elements can be shown clearly by representing the kinematic chain by a
graph, which can either be a connection graph (87) or a layout graph (475).
A graph will be more easily readable than a pure description of the mecha-
nisms. Mechanism theory also retains another important notion, mobility,
represented by the number of independent degrees of freedom of the end-
effector. We will return to this concept later.

Some of the problems occurring with serial manipulators can be re-
solved mechanically by distributing the load on links, i.e. by linking the
end-effector to the ground by a set of chains that each support only a frac-
tion of the total load. The use of closed-loop kinematic chains for manipu-
lators thus seems to be quite interesting; actually this option had already
been explored even before the term robot had been coined. Some theoretical
problems linked to this type of structure were mentioned as early as 1645 by
Christopher Wren, then in 1813 by Cauchy (75), in 1867 by Lebesgue (348)
and in 1897 by Bricard (56).

One of the main theoretical problems in this field, called the spherical
motion problem, to which we will return later, was the central point of a
competition called Le Prix Vaillant, that took place in France in the 1900’s
and was organized by the Académie des Sciences. The prize was won on
equal terms by Borel (52) and Bricard (52).

Later on Bonev (50) mentions a patent filed in 1928 by J.E. Gwin-
nett (210) for what we will call a spherical mechanism to be used as a
platform for a movie theater (figure 1.2).

On the practical side of things, in 1947 Gough (203) established the
basic principles of a mechanism with a closed-loop kinematic structure (fig-
ure 1.3), that allows the positioning and the orientation of a moving plat-
form so as to test tire wear and tear. He built a prototype of this machine in
1955 (204). For this structure, the moving element is a hexagonal platform
whose vertices are all connected to a link by a ball-and-socket joint. The
other end of the link is attached to the base by a universal joint. A linear
actuator allows the modification of the total length of the link; this mech-
anism is therefore a closed-loop kinematic structure, actuated by 6 linear
actuators. This device was still used up to 2000, the year where it was put
into retirement (figure 1.4).
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Figure 1.2. The spherical mechanism proposed in 1928 by J.E. Gwinnet

Figure 1.3. Gough platform (1947). The moving platform, to which a tire is attached,
is linked to the ground by 6 links with varying lengths. An universal joint is put at one
of the ends of each link, a ball-and-socket joint at the other. Changing the length of the
links modifies the position and the orientation of the moving platform, and therefore of
the wheel. This wheel is driven by a conveyor belt and the mechanism allows the operator
to measure the tire wear and tear under various conditions (203).
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Figure 1.4. The last prototype of a Gough platform to be used in the Dunlop Tyres com-
pany (courtesy of Mike Beeson from this company). This machine, called the Universal
Rig, is on exhibit in the British National Museum of Science and Industry

We will examine the Gough mechanism in detail throughout this book;
however, let us suppose, for the moment, that the actuators are able to
control the 6 degrees of freedom of the moving platform. The interest that
this structure represents for the ratio load capacity/mass ratio is immedi-
ately clear. Indeed, while the structure occupies its central position, the
actuators support approximately only 1/6 of the total load. Moreover, the
flexure imposed on the links is reduced because the joints may impose only
traction-compression constraints. These two factors then allow us to de-
crease the mass of the moving structure by permitting the use of actuators
of lower power and links of smaller size (it has been shown for a 3 d.o.f. par-
allel robot that the average energy usage was 26% of a serial manipulator
of similar size (363)). Employing linear actuators is interesting because this
type of element is available with excellent mass, speed, acceleration and
motion amplitude characteristics (hydraulic jack for example). Intuitively,
one can also imagine that the positioning accuracy is good, and that for
two reasons:
− the (unmeasured) deformations of the links due to the flexure are re-

duced
− the errors in the internal sensors of the robot (measurement of the

lengths of the links) only slightly affect errors on the platform position.
For example, if all the sensors present the same error, the calculation of
the pose of the platform based on the sensor measurements will show
an error only for the vertical axis: the amplitude of the error will be
about the same as the error in the sensors.

But as mentioned in the historical paper of I. Bonev (50) although
Gough was the first to design a functional prototype of parallel robot,



8 CHAPTER 1

hexapods were known well before. System of this type are known under the
acronym MAST, which stands for Multi-Simulation Table or Skake Table
with orthogonal disposition of the legs, that are popular in the vibration
community because for small variations of the leg lengths the displacement
of the platform can be easily interpreted. Figure 1.5 shows such a shake
table developed at the department of Civil Engineering of the University
of Minnesota (168).

Figure 1.5. The shake table of the University of Minnesota for earthquake simulation

The use of this type of mechanism started, however, only when the first
flight simulators were built. During the 1960’s, the development of the
aeronautics industry, the increase in the cost of pilot’s training, together
with the need to test new equipment while not flying, brought researchers to
look into mechanisms with several degrees of freedom that could simulate a
heavily loaded platform with high dynamics (for example the whole cockpit
of a plane). Pictures of early simulators are presented in figure 1.6. The
manipulator mass is important for dynamics because the disturbing effects
(for example the Coriolis force) decrease as the mass of the moving equip-
ment decreases. All those constraints make the use of serial manipulators
difficult, because their bandwidth is generally small.

In 1965, Stewart (551) suggested that simulators should be fitted with
the mechanism shown in figure 1.7. For this structure, the moving element
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Figure 1.6. Early simulator. On the left the Iron Cross (1956) mounted on an universal
joint whose motion was controlled through 6 nitrogen nozzles. On the right the lunar
rendez-vous simulator (1962) with 2 d.o.f. (courtesy NASA)

(1)

(2)

ball-and-socket joint

joint
passive

moving platform

active

Figure 1.7. Stewart platform (1965). The motions of the moving platform are obtained
by modifying the length of the 6 articulated links.
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is a triangular platform whose vertices are all connected by a ball-and-
socket joint to an under-mechanism constituted of two jacks (1, 2), placed
also in a triangular fashion. One of the ends of each of those jacks is linked
by a revolute joint to a vertical axis link that can rotate around its axis.
The other end of one of the two jacks is attached by a ball-and-socket joint
to the moving platform, the other end of the second jack is linked by a
revolute joint to the body of the first jack. In the very last section of his
paper, Stewart mentions the possibility of joining the ends of the jacks at
a point linked to the platform, thus reproducing the idea of the Gough
platform.

One of the reviewers of Stewart’s paper happened to be Gough, who
recalled the existence of his own structure. Stewart’s other reviewers even
suggested that the Gough platform should be used for off-shore drilling
platforms or for milling machines. This revealed itself to be an excellent
vision of the future, as will be exposed later on. It seems that the Stewart
platform has not yet received any practical application, while the Gough
platform has been used extensively. Ironically the Gough platform, which
appeared much before Stewart’s, is most often known as the Stewart plat-
form!

But although Stewart’s paper was instrumental in the development of
flight simulator, it must be noted, as mentioned by Ilian Bonev (50), that in
1962 an engineer from the Franklin Institute, Klaus Cappel, was given the
task of improving an existing MAST. He came up with the same octahedral
arrangement as Gough. This device was patented in 1967 (69) (the patent
was filed on December 7, 1964) but as a motion simulator on the request of
the Sikorsky Aircraft Division for the design and construction of a 6 d.o.f.
helicopter flying simulator (figures 1.8, 1.9).

Figure 1.8. A drawing in the patent of K. Cappel (1967).

The patent was infringed by CAE, a leader in flight simulator, but the
lawsuit by the Franklin Institute was successful. According to Klaus Cappel,
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Figure 1.9. On the left the first flight simulator designed in the mid 1960s by Cappel, and
on the right a demonstration by K. Cappel to the management of the Franklin Institute
(courtesy of Klaus Cappel)

the initial response of his management to his innovative design was very
negative (70). . . as can be seen on the picture (1.9).

Nowadays, flight simulators of all sorts use the principle of Gough’s and
Cappel’s platform architecture1. However, it is also used in many other
simulators, sometimes surprisingly, as we will see in the next chapter.

But parallel robots were also considered for other applications than
flight simulator. According to Ilian Bonev (50) Willard L.V. Pollard estab-
lishes a design of a parallel robot for automated spray painting although
he never build a prototype. But his son, Willard L.V. Pollard Jr, filed on
October 29, 1934 a patent that was issued in June 1942 (481) describing
his father’s invention.

1.3. Needs for robotics

A positioning device for a simulator imposes constraints which may be
quite different from those necessary in a robotic system. In the later case,
accuracy may be most important (for example for assembly tasks), while
the amplitude of motion is less so. Dynamics is also important for tasks
involving a contact between the robot and its surrounding, as in grinding
or surface following; or for tasks where execution speed is crucial, like pick-
and-place operations, which need a robot with a very light moving part, a
so-called fast robot.

Another important concept is the compliance of the robot. In general
1see the Simulator section in the references Web page
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when the end-effector of a serial robot is submitted to external forces/torques
there will be slight changes in the pose of the end-effector which are due to
backlash in the drive, flexure in the links; these cannot be observed by the
internal sensor of the robot, and therefore cannot be corrected using the
robot control, hence the name passive compliance. In many applications, for
example in the machine-tool industry, this compliance has a very negative
effect.

Closed-loop kinematic chain stiffness is in general much higher than that
of an open-loop structure, and the deformations due to passive compliance
will often be measured easily. Elasticities could also be added voluntarily
in order to increase the passive compliance (which may be useful in some
phases of tasks like assembly) while the controlled actuators could be used
in order to obtain a fixed behavior model. For instance, they could be made
to be very stiff along a certain direction, and soft in the two orthogonal
directions. This type of control is called an active compliance, as it makes
the manipulator controls intervene actively.

We will now define the types of mechanisms that will be studied in this
book.

1.4. Parallel robots: definition

1.4.1. GENERALIZED PARALLEL MANIPULATORS: DEFINITION

General parallel manipulators can be defined as follows:

A generalized parallel manipulator is a closed-loop kinematic chain
mechanism whose end-effector is linked to the base by several independent
kinematic chains.

1.4.2. PARALLEL MANIPULATORS

This definition of generalized parallel manipulators is very open: it includes
for instance redundant mechanisms with more actuators than the number
of controlled degrees of freedom of the end-effector, as well as manipulators
working in cooperation .

We will deal mainly with mechanisms with the following characteristics:

− at least two chains support the end-effector. Each of those chains con-
tains at least one simple actuator. There is an appropriate sensor to
measure the value of the variables associated with the actuation (ro-
tation angle or linear motion).

− the number of actuators is the same as the number of degrees of free-
dom of the end-effector.

− the mobility of the manipulator is zero when the actuators are locked.
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This type of mechanism is interesting for the following reasons:

− a minimum of two chains allows us to distribute the load on the chains
− the number of actuators is minimal.
− the number of sensors necessary for the closed-loop control of the mech-

anism is minimal.
− when the actuators are locked, the manipulator remains in its position;

this is an important safety aspect for certain applications, such as
medical robotics.

Parallel robots can therefore be defined as follows:

A parallel robot is made up of an end-effector with n degrees of free-
dom, and of a fixed base, linked together by at least two independent kine-
matic chains. Actuation takes place through n simple actuators.

1.4.3. FULLY PARALLEL MANIPULATORS

Parallel robots for which the number of chains is strictly equal to the num-
ber of d.o.f. of the end-effector are called fully parallel manipulators (186;
475).

Gosselin characterizes fully parallel manipulators by the equation

p(n − 6) = −6 , (1.1)

where p represents the number of chains and n the number of rigid bodies
within a chain. Earl (150) also defined a parallelism index with the formula

d =
k

l − 1
, (1.2)

where k represents the number of independent loops, i.e. the difference
between the number of joints with one degree of freedom and the number
of moving bodies; and l is the number of degrees of freedom of the end-
effector. This index varies between 0 and 1: 1 for a fully parallel robot, and
0 for a serial robot. Remember that, in certain cases, a manipulator which
is not fully parallel may have a parallelism index of 1; see Chapter 2. More
recently Rao, has defined various parallelism indices for planar robots (496).

1.4.4. FULLY PARALLEL MANIPULATORS: ANALYSIS

The definition of fully parallel manipulators allows us to characterize chains.
There are two main cases: planar robots (three degrees of freedom in the
plane), and spatial robots, which do not move just within a plane.
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1.4.4.1 Planar robots
A fully parallel planar manipulator has an end-effector with three degrees
of freedom, two translations and one rotation. Planar robots with less than
three degrees of freedom will be mentioned only briefly in this book. Three
chains support the end-effector; the chains are attached to the end-effector
at three points: generically the end-effector is a triangle.

The fact that the mobility is zero when the actuators are locked, and
that it becomes 3 when the actuator degrees of freedom are added, can be
used to characterize the chains.

It is difficult, however, to define a general mobility criterion for closed-
loop kinematic chains, as Hunt (248) and Lerbet (359) already noted (a
full section on mobility indices may be found in the references Web page).
Classical mobility formulae can indeed lead us to ignore some degrees of
freedom. Grübler’s formula is nevertheless generally used: it gives a planar
mechanism mobility m

m = 3(l − n − 1) +
n∑

i=1

di , (1.3)

where l represents the total number of rigid bodies of the mechanism, in-
cluding the base, n is the total number of joints and di the number of
degrees of freedom of joint i. Note that if m is negative the mechanism is
deemed overconstrained.

If we assume that the three chains are identical, and if n1 represents
the number of rigid bodies in a chain, there will be a minimum of n1 + 1
joints with one degree of freedom connecting them, of which one will be
actuated. Then

l = 2 + 3n1 , n = 3(n1 + 1) ,
n∑

i=1

di = 3(n1 + 1) ,

thus we get
3 = −6 + 3(n1 + 1) ,

and thus n1 = 2. A chain is therefore made of two rigid bodies linked by a
joint. Each of these rigid bodies is linked by a joint either with the base or
with the end-effector. There will thus be three independent joints within
the chain.

It is worth noting, however, that if the actuated joints are locked we
will have

l = 5 n = 6
n∑

i=1

di = 6 ,

so that the mobility is zero.
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1.4.4.2 General case
Fully parallel robots with m degrees of freedom possess m chains supporting
the end-effector. If these chains are identical, Grübler’s formula for three-
dimensional mechanisms may be written as

m = 6(l − n − 1) +
n∑

i=1

di . (1.4)

The use of this strictly combinatorial formula can sometimes lead to mis-
takes because it does not take the geometric relations between the joints
into consideration. For example, mechanism with 0 mobility, or even over-
constrained may have in fact finite mobility because of the dependency
between the constraints.

The most famous counter-examples are Cardan’s joint, and Bennet and
Goldberg’s mechanisms, which are called paradoxical mechanisms. In or-
der to take geometry into account, several methods have been considered,
for example that of Angeles (10), Gogu (185), Hervé (226), Jin (290) or
Mart̀ınez (384)∗. Their application has however not been generalized yet.
Here, Grübler’s formula has been deemed sufficient for a preliminary anal-
ysis.

If n1 represents the number of bodies within each chain, and n2 the
number of degree of freedom of the joints of each chain, we have

m = 6 + 6 mn1 − 5 mn2 .

Complete solutions for this equation are sought for different mobility values,
and in each case we will look for a solution with a minimal n2 (the reduction
of the number of joints is a way of decreasing the positioning errors of
the end-effector). Solutions are obtained only for the following (m,n1, n2)
triplets: (2, 3, 4), (3, 4, 5), (6, 5, 6).

It is easy to show that in these cases, the mechanism mobility becomes
zero when each actuator is locked. We note also that it will not be possible to
build fully parallel manipulators with identical chains if the desired mobility
is 4 or 5. Different types of chains will have to be introduced. Note that this
claim has been discussed in the community as researchers have exhibited
structures with identical chains that in theory will have mobility 4 or 5.
This may be easily explained when looking at the proof of the Grübler
formula (see exercise 1.1) that is just based on the difference m between
the number of linear equations that relates the generalized velocities of each
body in the mechanism to the joint velocities, and the number of generalized
and joint velocities, and therefore assumes that the system has full rank.
The equations are dependent upon the geometry of the system, and for a
mechanism of a given type with arbitrary geometry the full rank assumption
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will be true, and the Grübler formula will give the right mobility. But
for some particular geometries one (or more) of the equations may just
vanish, or equations will become dependent, inducing a loss of rank, and
the mechanism will have a higher mobility than the general case, either with
an infinitesimal motion (the rank drops only at a given configuration) or
with a finite motion. But this drop of rank may usually happen only if very
strict geometrical conditions are fulfilled: in practice these conditions may
not be exactly verified (for example because of manufacturing tolerances)
and the mechanism that has in theory n d.o.f. will in fact exhibit m d.o.f
(this will be illustrated in the next chapter). Consider for example the
planar mechanism described in figure 1.10: with its three revolute joints
at A1, A2, C, its mobility according to Grübler formula is 0, and this is
verified for generic positions of A1, A2 and lengths l1, l2. But if l1 = l2
and A1 = A2 the mechanism exhibits one d.o.f. (a rotation around A1).
In practice the mechanism may have a different mobility: for example if
there is no clearance at A1 = A2 but the tolerances on the lengths lead
to l1 �= l2, then the mobility will be 0, as the mechanism cannot even be
assembled. On the other hand, clearance at A1, A2 may allow us to get
a mobility if sufficient forces/torques are applied at C. Determining if a

l1

l2

A1 A2

A1

C C

Figure 1.10. A mechanism (on the left) that has generically a mobility 0 may exhibit a
larger mobility in specific cases (on the right)

structure that has in theory n d.o.f. (with n < 6) will still exhibit the same
number of d.o.f. being given bounded manufacturing tolerances, is still an
open problem. It must also be noted that the Grübler formula just counts
the number of d.o.f. of the end-effector, and neither provides their type nor
indicates if the d.o.f. are the same everywhere. Indeed some mechanism may
exhibit various d.o.f. For example the surprising Dymo robot (667) has 3
d.o.f. which can be of 5 different types: 3 spatial translations, 3 orientations,
3 planar d.o.f., a locked mode (no motion) and a mix of translation and
orientation.

Finally note that in the Grübler formula we just count the number of
d.o.f. constrained by the joints. The technological means that will be used to
realize these constraints do not play a role in the mobility of the mechanism.
A direct consequence is that mechanisms that differ by their joint nature
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may be equivalent from a mobility view point. For example replacing a
prismatic actuated joint by a revolute one (or by more complex components
such as cams) in a given mechanism will not change the mobility (but
may have an high impact on other kinematic performances). Consequently,
mechanisms that differ from another mechanism only by such arrangement
will belong to the same kinematic class and can hardly be qualified as
”novel”.

1.5. Contents

This book is set around different problems that occur for the design, anal-
ysis and use of parallel robots.
In Chapter 2, Structural Synthesis and Architectures, synthesis methods
for designing robot, with given d.o.f. will be presented, and various possible
mechanical architectures of parallel robot will be exposed, as well as typical
examples of applications.
Chapter 3, Inverse Kinematics, will show how to calculate the joint coor-
dinates according to the desired end-effector pose.
The inverse relation allowing us to determine the end-effector pose from
the joint coordinates measurements will be studied in Chapter 4, Direct
Kinematics.
Chapter 5, Velocity and Acceleration analysis, will establish the relations
between the end-effector velocities and the actuator velocities, together
with their limits. Similar relations will be established for accelerations, and
an accuracy analysis will be proposed.
Chapter 6, Singular Configurations, will discuss special poses for parallel
robots, where the mobility of the structure is no longer zero, although the
actuators are locked.
Chapter 7, Workspace, will deal with the calculation of the boundaries for
the possible motions of a parallel robot when it is subjected to limitations
on the values of its joint coordinates and to constraints on the motion of its
passive joints. Motion planning within a workspace will also be discussed.
Chapter 8, Static Analysis, will then give a detailed explanation of the
relations between the forces acting on the end-effector and the forces exerted
by the actuators, as well as the inverse relation. We also examine parallel
robot stiffness in the same chapter.
Chapter 9, Dynamics, will then try to show how to calculate the forces that
should be exerted by the actuators so that the end-effector reaches a certain
speed and acceleration rate. The inverse relation will also be studied.
We will consider the problem of parallel robots Calibration in Chapter 10.
A book on mechanisms would not be complete without a chapter on design;
Chapter 11, Design, will look into that.



18 CHAPTER 1

Finally, as many of the algorithms presented in this book rely on system
solving and interval analysis (a not so well known domain), we present in
two appendices a brief introduction to these topics.
Note that there is no chapter dealing with control per se, although this
issue will be addressed in some chapters. We have focused this book on
parallel robot modeling, an already very large domain, that it is necessary
to master before addressing control problems.

1.6. Exercises

Exercise 1.1: Prove the Grübler formula
Exercise 1.2: Show that the mobility of fully parallel spatial robots with
identical chains is null when each actuator is locked.
Exercise 1.3: Show that there are no fully parallel robots with identical
chains that possess a mobility of 4 or 5, using Gosselin’s formula (equa-
tion 1.1).
Problem 1.1: Find structures of parallel robots with identical chains
that have exactly 4 or 5 d.o.f. even if manufacturing tolerances are taken
into account
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Structural synthesis and architectures

This chapter will present general methods to determine the possible struc-
tures of parallel robots that have a given number of d.o.f. and then a com-
prehensive enumeration of parallel robots mechanical architectures as de-
scribed in current literature on the subject1. The list will be classified by
increasing numbers of degrees of freedom, from 3 to 6, for the end-effector.
In the figures, actuated joints will be represented by arrowed vectors, while
passive joints will be indicated, if necessary, by dashed vectors.

Examples of the use of parallel robots for very diverse applications will
be discussed. Representative types of parallel manipulator will then be cho-
sen to be studied more specifically in the remainder of this book.

2.1. Introduction

Because of serial robot deficiencies, a few researchers have tried to develop
new robotic structures. Minsky in 1972 (423), and Hunt in 1978 (248), pro-
posed parallel structures. But such structures were based on the ingenuity
of the researchers and not on a systematic approach. Structure (or type)
synthesis is the domain in which a methodology is used to try to gener-
ate all the structures that have a desired kinematic performance. In this
chapter we will restrict this kinematic performance to the number of de-
grees of freedom as we will see that it is quite difficult to consider other
kinematics properties. This is one key issue for parallel robots: as opposed
to serial robots, for which there is a limited number of possible mechanical
structures, there is a very large variety of possible close-loop mechanisms,
and it is usually admitted that the topology of the structure will affect the
overall performance of the robot. Note that sometime the word synthesis
is also used for dimensional synthesis i.e. to determine what should be the
geometry of a given structure to reach some kinematic performance: this
very important issue will be addressed in the ”Design” chapter.

1Obviously all possible mechanical architectures cannot be presented in this book, but
the Web site: www-sop.inria.fr/coprin/equipe/merlet/Archi/archi robot.html presents a
comprehensive description of more than 150 mechanical architectures. Furthermore it
is very often quite difficult to determine who has proposed for the first time a given
architecture: we have done our best to reference the earliest journal paper that proposes
a full analysis of the robot.

19
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Starting around about the year 2000 there has been a very large increase
in the number of papers describing new structures for parallel robots (al-
though we will see that many of them were known well before), especially
ones having less than 6 d.o.f.. There is an overriding motivation behind
such efforts: for many applications, less than 6 d.o.f may be needed. For
example, for milling operation in the machine-tool domain, the rotation of
the platform around its normal is not needed, as the spindle will manage
this d.o.f.: hence only 5 d.o.f. are needed. In that case the usual claim is that
machines having only the necessary d.o.f. will be less costly than the usual
6 d.o.f. parallel robot, as they have less actuators, and that the control will
be simpler. In my opinion such a claim is a complex issue, and its veracity
is difficult to establish in general terms. First of all, the cost of the machine
is only a part of the operating cost, and various factors may increase the
cost of less than 6 d.o.f. robot:

− maintenance and fabrication cost may be higher if the chains of the
robot involves different actuators and sensors

− the robot will most probably exhibit parasitic motion (i.e. motion that
is not wanted) that will affect its performances, and will result in poorer
quality for the task

− on the other hand the redundancy of a 6 d.o.f. robot may be used to
improve the quality of the task (see for example (412) for the use of
the redundant mobility of a 6 d.o.f. robot for improving the stiffness
of a 5 axis milling machine, and the ”Workspace” chapter)

Hence only a careful economic and technical analysis will allow us to deter-
mine the best structure for a given task. Therefore, in my opinion, papers
presenting new architectures with less than 6 d.o.f. should cover also basic
issues (such as kinematics, workspace, singularity) and should provide a
critical analysis of the performances of the proposed robot (e.g. the ampli-
tude of the parasitic motion).

Nevertheless it is clear that structural synthesis is an exciting domain
with a large number of open problems.

2.2. Structural synthesis methods

Structural synthesis is a old problem in mechanism theory (156). We have
seen that mobility formulae may be used for that purpose (see for exam-
ple (7; 290; 642)) but this approach may have difficulties to deal with the
synthesis of robots with less than 6 d.o.f.

We will focus here on the most widely used synthesis approaches (and
their variants): graph theory, the group theory and the screw theory ap-
proaches.
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2.2.1. GRAPH THEORY

The enumeration of all possible structures having a given number of d.o.f.
may be conducted by considering that there is only a finite set of possible
kinematic pairs, and hence a very large, but finite, set of possible structure
combinations. But the manipulation of the combination of kinematic pairs
should rely on a formalism that allows one to determine automatically
the number of d.o.f of the structure. Freudenstein was the first to propose
the use of graph theory for that purpose. He devised a graph scheme in
which the vertices correspond to the links of the mechanism, and the edges
correspond to the joints. Initially graph description was used as a simple
graphical representation of a mechanism but further works showed that
graph theory was a powerful tool to manipulate these graphs, especially
with computers. Graph theory was used early by Earl (150) to devise new
parallel robots architectures. But graph theory has two drawbacks which
are difficult to overcome when dealing with parallel robots:
− isomorphism: to avoid the combinatorial explosion of an exhaustive

enumeration of all possible mechanisms, contracted graphs are used.
But there is no longer a one-to-one correspondence between the graphs
and the mechanisms: a given mechanism may be represented by dif-
ferent graphs, and redundant graphs should be eliminated from the
enumeration. This complex issue has never been solved completely

− graph theory makes extensive use of the mobility formulae (such as
Grübler formula), and for spatial structures there are many mecha-
nisms that do not obey this formula (e.g. the parallelogram) and that
play an important role in structural synthesis. Hence such elements
cannot be ignored

A somewhat related approach was developed by Assur (84): instead of
kinematic chains, basic families of mechanisms are considered and a joint
simplification method is used to remove joints so that the mechanism has
the desired number of d.o.f.: but this method seems to be difficult to use
for spatial mechanisms.

2.2.2. GROUP THEORY APPROACH

2.2.2.1 The Lie group and subgroups of displacement
The set {D} of displacements, which represents the motion of rigid body,
have the special structure of a group, the displacement group. This group
is directly related to the Special Euclidean matrix group SE(3) which is
defined as the set of matrices of the form:

SE(3) =
{(

R p
0 1

)}
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where R is a rotation matrix and p a 3-dimensional vector. SE(3) is a con-
tinuous group, and any open set of elements of SE(3) has a one-to-one map
onto an open set of R6. In mathematical terminology SE(3) is a differen-
tiable manifold that is called a Lie group. There are subgroups of the group
of displacements that will play an important rule in structural synthesis. A
comprehensive list of these Lie subgroups is given by Hervé (228)∗. Let us
just mention some of these subgroups:
− {T (u}: the translations parallel to the vector u
− {T}: all the spatial translations
− {X(w)}: all the translatory and rotary motions about all axes that

are parallel to the axis defined by the vector w. Such a motion is also
called a Schönflies motion, as this mathematician extensively studied
this type of motion (522).

− {Y (w, p)}: all the planar translations perpendicular to the vector w
combined with a screw motion of pitch p along any axis parallel to w
(called also pseudo-planar motion)

Serial arrangement of two elements of a subgroup is called composition,
and may lead to an element of another subgroup. For instance, combining
three elements of {T (u)} with vectors u1,u2,u3 may lead to an element
of the translation motions subgroup {T} in space if certain constraints on
the vectors ui are satisfied.

But for us the most important operation is the intersection operation ob-
tained when elements of subgroups act on the same rigid body. Hervé (228)∗
presents rules that regulate this operation (for instance the intersection of
two elements of {D} is an element of {D}).

An interesting intersection case is that of the intersection of two ele-
ments of the {X(w)} and {X(w′)} subgroups with w �= w′ is an element
of the {T} subgroup.

2.2.2.2 Subgroup motion generators
Displacements of Lie subgroups are generated by kinematic chains that are
called motion group generators.

These generators plays an important part for the architectural possibil-
ities of parallel robots. It therefore seems necessary to list them briefly. We
present here the generators of the {D} group (that will be important for
the design of 6 d.o.f. robots) but Hervé (228)∗ presents generators for the
other subgroups. We assume that only R,P, S types of joints are used.

The {D} generators can be classified into 4 main types: RRPS, RPRS,
PRRS, RRRS (figure 2.1), with constraints on the positions of the joint
axes.

The RRPS type is constituted of an universal joint, followed by a pris-
matic joint which is itself followed by a ball-and-socket joint. The RPRS
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RRPS

PRRS
RPRS

R − RRS

Figure 2.1. {D} motions group generators using joints of the R, P, S type.

type is made of a revolute joint on whose axis a prismatic joint is set, fol-
lowed by a revolute joint, itself followed by a ball-and-socket joint. The
PRRS generator is composed of a prismatic joint followed by a univer-
sal joint at the end of which is a ball-and-socket joint. Lastly, the RRRS
type is made of a revolute joint followed by a universal joint, on which a
ball-and-socket joint is set.

2.2.2.3 Type synthesis based on group theory

The basic principles of parallel robot synthesis based on group theory are
as follows:

1. determine to which subgroup S the end-effector should belong to have
the desired d.o.f.

2. determine all the possible subgroups to which the different kinematic
chains that will constitutes the legs of the robot may belong so that
the intersection of these subgroups belongs to S.

3. determine all the motion generators of these subgroups: they will con-
stitute the kinematic chains of the robot

For example if the robot must have 6 d.o.f, then all its legs should be-
long to the subgroup {D}. Various authors have presented examples of
this approach, allowing us to obtain an enumerative list of possible struc-
tures (12)∗,(230)∗, (302)∗,(361)∗.

Synthesis based on group theory is still open for investigation as not
all the group structures have been exploited: for example Rico (507) has
shown that the concept of conjugacy classes of a group may be used to
explain the mobility of paradoxical mechanisms.
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2.2.3. THE SCREW APPROACH

2.2.3.1 Basics of screw theory
The group theory approach allowed the discovery of numerous new possible
structures. Nevertheless the group {D} has more special properties which
are not reflected by its Lie group structure alone. Consequently the group
theory approach has difficulty accounting for very special cases of mobility
such as paradoxical mechanisms.

We may extend the Lie group concept by considering the tangent space
at the identity element, which is a vector space called the Lie algebra of
the Lie group. As soon we have chosen an origin for SE(3) the associated
Lie algebra se(3) is the vector space of all instantaneous velocities whose
elements are 6-dimensional vectors of the form (Ω, v) where Ω is the an-
gular velocity of the rigid body, and v is its translational velocity. These
elements are called velocity twists or screws.

Forces and torques are important for motion and may be represented
as a couple of 3-dimensional vectors (F,M) called a wrench. A twist and a
wrench will be said to be reciprocal if

Ω.M + v.F = 0

When a kinematic chain is connected to a rigid body the key point is that
the possible instantaneous velocity twists for the rigid body are reciprocal
to the wrenches imposed by the kinematic chains (called the constraint
wrenches). In other words, the d.o.f. of the rigid body are determined by
the constraint wrenches. For a parallel robot the following statements hold:

− the velocity twist of the moving platform is the intersection of those
of all the legs of the robot

− the wrench of the moving platform is the union of those of all legs of
the robot

2.2.3.2 Type synthesis based on screw theory
Using the above statements, we may devise a synthesis methodology:

1. find the wrench system S that is reciprocal to the desired velocity twist
of the moving platform

2. determine the wrenches of the kinematic chains of the robot whose
union spans the system S

3. determine all the possible structures of the kinematic chains that will
generate the corresponding wrenches

4. as all considered twists and wrenches are instantaneous (synthesis
based on screw theory is called a first order approach) it is necessary
to verify that the mobility of the platform is not instantaneous
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The disadvantage of this approach is that it is difficult to automate,
especially steps 3 and 4. Group theory has the advantage here: by restrict-
ing the possibilities at step 2, the motion generators at step 3 are easily
identified. On the other hand, group theory may miss structures that will
not fall within the Lie subgroup framework.

Nevertheless, several authors have used this method to generate a large
number of structures with less than 6 d.o.f (158; 171; 176),(247)∗ , (327)∗,
sometime mixing the screw approach with a mobility formula (118; 246).

In conclusion, although the proposed methods of structural synthesis
has allowed us to determine a very large number of structures, this problem
is not yet solved.

2.2.4. STRUCTURAL SYNTHESIS AND OTHER KINEMATIC
PERFORMANCES

Many parallel robots have been proposed, and we will illustrate some of
them in the next sections. But an important question should be addressed:
may we design a synthesis approach that deals with any kinematic perfor-
mance other than the number of d.o.f. of the robot ?

This is possible to some extent for serial robots. For example, we may
compare the workspace ability of a Cartesian 3 d.o.f. translation robot with
that of a spherical 3R structure. Indeed if we assign a stroke of L to the
linear actuator of the Cartesian robot, the workspace volume will be L3,
while the workspace volume of a 3R robot whose links have a length L will
be 4π(2L)3/3 ≈ 33.5L3. Hence from the workspace point of view the 3R
structure is superior to the Cartesian structure, but the opposite will hold
for positioning errors. Consequently, if a task involves both workspace and
accuracy constraints we cannot directly state which one of the structures
is more appropriate.

For parallel robots, it seems that a simple design rule such as that de-
rived for 3R and Cartesian robots, cannot be established (although some
attempts have been made for planar robots (496)∗ or in a more general
case (74; 580)), as their performance will be highly dependent on their di-
mensioning, as will be illustrated in the following chapters. Consequently,
structural synthesis cannot be separated from dimensional synthesis (a
complex issue that will be addressed in the ”Design” chapter) and we put
forward the following conjecture: a parallel robot with well-designed dimen-
sions will exhibit overall better performance compared to another parallel
robot whose structure seems to be more appropriate but whose dimensions
have been poorly chosen.

This conjecture is also an answer to a question that is frequently asked
by end-users: what is the structure that is most appropriate for my task ?.
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2.2.5. STRUCTURAL SYNTHESIS AND UNCERTAINTIES

Uncertainties are inherent in robotics: we have manufacturing tolerances for
the mechanism, sensor measurement noise, tracking errors due to control,
and uncertainties in the task. Some of these errors may be corrected (for
example through calibration, improvement in the control hardware, . . .) but
cannot be eliminated. As mentioned earlier, manipulators with less than 6
d.o.f. will exhibit parasitic motion because their design does not exactly
satisfy the stringent geometrical conditions that are usually necessary to
obtain the desired d.o.f (see for example (465)∗). A preliminary analysis
of this problem was performed for the 3-UPU robot (figure 2.10), a robot
that theoretically has 3 d.o.f. but that may exhibit significant rotational
motion, and is very sensitive to manufacturing tolerances (212; 463; 626).

An open problem for such a structure is to determine the influence
of the manufacturing tolerances on the amplitude of the parasitic motion.
Furthermore, this should be done over the whole workspace of the robot (i.e.
we must determine what is the maximum of the amplitude of the parasitic
motion over the workspace): this will be called the direct tolerance problem.

An even more complex issue, the inverse tolerance problem, is to deter-
mine what should be the manufacturing tolerances for a given structure so
that the maximum of the amplitude of the parasitic motion is lower than
a given threshold.

Both problems are very difficult to solve (and more so as they cannot
be decoupled from the dimensional synthesis). In my opinion, this is one of
the biggest kinematic challenges as solutions of these problems are needed
to determine if a structure may be used for a given task.

The next sections will present various architectures for robots with 3
to 6 d.o.f. Most of these structures have been found through the synthesis
methods that have been presented in the previous sections (although some
of them were introduced well before). Clearly not all architectures can be
presented: we have chosen a representative subset of robots which have
either been extensively studied both theoretically and experimentally, or
present theoretical interest. Drawings of other architectures can be found
at the references Web page. Still, determining if a given structure has been
previously published (or is only a variant of a known architecture) is a
difficult task.

2.2.6. NOTATION FOR PARALLEL ROBOTS

There is no uniform notation in the literature for describing the mechanical
architecture of a parallel robots. For example a Gough platform may be
denoted either as a 6-6 robot (i.e. a robot having 6 attachment points for
the legs on the base and on the platform) or as a 6-UPS robot (i.e. having 6
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legs having a UPS mechanical structure) or as a 3T -3R robot (i.e. having 3
translational and 3 rotational d.o.f., the translations (rotations) being along
(about) axes that are fixed in the reference frame). None of these notations
is satisfactory: the 6-6 notation does not describe the structure of the legs;
the 6-UPS notation does not indicate that some legs may share the same
attachment point, or that the geometry of the legs satisfies some specific
constraints; and the 3T -3R does not indicate the mechanical architecture
of the robot.

Such lack of uniform notation is unfortunate because a complete textual
description of the mechanical structure of robot is a pre-requisite for the
design of software that will provide an automated analysis of performance.
The development of such a tool may seem a long term objective, but we will
see in the following sections that many problems related to parallel robots
may be solved for any robot structure as soon as the problems have been
solved for a few classes of robots. Thus a process using a library of known
solutions may be the right way to develop this design library. Nevertheless
we will use available notations as their meaning will be clear according to
the context.

2.3. Planar robots

Conventionally, revolute joints are labeled R, while prismatic joints become
P . Actuated joints are underlined.

2.3.1. 3 D.O.F. MANIPULATORS

Consider a moving platform, within the plane, whose three degrees of free-
dom, the two translations along the x and y axes, and rotation through an
angle θ around the axis z, perpendicular to the plane, are to be controlled.
A fully parallel robotic structure is sought: according to the definition given
earlier, it should possess three independent kinematic chains, actuated by
three actuators. As each of these chains must be linked to the ground, and
to the moving platform at the same time, there will then be three attach-
ment points on the ground and three on the moving platform. One can
therefore consider, still in a general manner, a triangular moving platform.
We showed in the previous chapter that under these conditions, each of the
chains is constituted of two rigid bodies linked together by a joint, and that
they have a total of three joints.

A chain can be described by the sequence of these three joints, from the
base upwards. The chains can present the following sequences: RRR, RPR,
RRP , RPP , PRR, PPR, PRP , PPP (figure 2.2). The sequence PPP is
excluded as the joints motion must remain independent.
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Figure 2.2. The different fully parallel planar robots with three degrees of freedom and
identical chains.

It is noteworthy that with a simple exchange of the base and the moving
platform, the robots of the RRP type become equivalent to PRR, and the
RPP equivalent to PPR. We have not specified the actuated joint, as it
can be any of the three. We should generally avoid placing the actuator on
the end effector in order to lighten the weight of the moving equipment. It
is also possible to build robots with different types for each chain.

A reference book on kinematics, static analysis and stiffness of these
robots has been published by Duffy (144), and there have been various
studies of these robots: 3-RRR robots were mentioned by Rooney (512),
Hunt (250), and were extensively studied by Kassner (304) and Gosselin (186).
Additional works are related to the dimensional synthesis problem (16;
536), singularity analysis (51; 199), workspace analysis (175; 336; 373) stiff-
ness (319), balancing (282).

The company Googol Technology is marketing such robots for educa-
tional purposes with the feature that the end-effector is reduced to a point,
so that the robot is redundant� Goo (figure 2.3).

3-RPR type robots have been extensively studied: synthesis (222; 435),
kinematic and singularity analysis (108)∗, workspace (255)∗ and joint force
optimization (148).

Robots of the 3-PRR type have been mentioned by Hunt (249), and
some of their characteristics were studied in (197) and have been proposed
for a high speed robot (297)∗. The company Hephaist Seiko is using this
architecture for its triaxial stage NAF3� HS.

Some papers have presented studies that are generic i.e. they may deal
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Figure 2.3. The redundant planar 3-RRR robot GPM of Googol Technology (courtesy
of Googol technology)

with any robot with R,P joints: synthesis (54)∗, workspace (255; 408; 617),
singularity (352; 526), forward kinematics (404), architecture selection (224)

Planar parallel robots with 3 d.o.f. and R,P joints have thus been ex-
tensively studied. We mention other works related to planar robots:
− the replacement of rigid links by wires. This topic will be studied in

another section
− variant of the 3-PRP structure with a triangular arrangement of the

linear actuators (58; 127)
− the use of holonomic pairs as actuators (223)∗
− redundant robot (for singularity avoidance) (166; 378)
− micro-robot with flexible joints (98; 297; 330; 471; 636)

2.4. Spatial motion robots

2.4.1. JOINTS AND ACTUATORS

For parallel robots, the most commonly used joints are, in increasing order
of degrees of freedom: revolute, prismatic, universal and ball-and-socket
joints. Such joints, sometimes with reduced motion ability, are available
commercially at a low cost. A problem still remains, however, with the
ball-and-socket joints, as usually models have a reduced range of motion
(typically ± 15 degrees) or do not allow the rotation of several bodies
around the same point, as some architectures would need.

Enlarging the amplitude of motion has been addressed mainly by com-
panies, and figure 2.4 shows the spherical joints of INA and of Hephaist
Seiko. The joint of Hephaist Seiko allows for a misalignment of 30 or 45
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degrees with a size from 7.6mm to 7.6cm and a weight from 15g to 6.73kg.

Figure 2.4. Spherical joints of INA and Hephaist Seiko (pictures courtesy of INA-Scha-
effler KG and Hephaist Seiko)

As for connecting multiple bodies to the same joint, Bosscher summa-
rizes the solutions that have been proposed (53). For all these solutions,
a compromise has to be found between stiffness and range of motion. To
improve the stiffness, U joints with skew axes are sometime used (e.g. in the
M-850 of Physik Instrumente) as it is claimed that their stiffness is better.
Another important point is that we will see that it may interesting for the
direct kinematics or for the calibration to have instrumented passive joints
(i.e. joints whose motions may be measured at least along one direction).

For small robots in which the motions of the passive joints are of low
amplitude, the use of flexible joints (called also flexure hinge) has also
been proposed, either elastic (605) or using specially designed deformable
structures (298; 393; 449; 471; 636) some of which may allow relatively large
motion (429).

As for the actuators, all sort have been used: pneumatic, hydraulic, elec-
trical, magnetic, piezo-electric, shape memory alloy, magnetostrictive, . . .
(consult the ”Actuators” section in the references Web page). Specific actu-
ators will be described in the micro-positioning section but we can mention
the use of two stage struts for parallel robots whose legs are submitted to
torsion, a piezo actuator enabling a higher torsional stiffness (444)∗. For the
sake of curiosity we should mention the use of spreadbands that act at the
same time as actuators and joints (521) (figure 2.5). Wire-driven parallel
robot have also been intensively studied; as this actuation scheme has a
large impact on the analysis, we will devote a full section to that topic. We
must also note the increasing use of electrical linear motors, especially for
machine-tools.
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Figure 2.5. A planar parallel robot using spreadband actuators (courtesy of Braun-
schweig Technical University)

2.4.2. CLASSIFICATION OF PARALLEL ROBOTS.

Parallel robots will be presented by increasing number of d.o.f. of the plat-
form. Clearly, as seen in the synthesis section, not all possible architectures
can be presented, and we have selected a few representative robots. Other
architectures are presented in the references Web page. Remember also
that for robots with less than 6 d.o.f., the presented architecture has only
in theory the claimed number of d.o.f, as seen in the synthesis section.

2.4.3. 3 D.O.F. MANIPULATORS

2.4.3.1 Translation manipulators
Manipulators with 3 degrees of freedom in translation prove extremely in-
teresting for pick-and-place and machining operations. Results of the syn-
thesis methods for this type of robot may be found in (74)∗,(171; 176)
(230)∗,(247)∗, (290; 328).

The most famous robot with three translation degrees of freedom is the
Delta (figure 2.6), that was initially developed at École Polytechnique from
Lausanne (EPFL) by Clavel (99) (see (47) for an history of the development
of the Delta and its application). All the kinematic chains of this robot
are of the RRPaR type: a motor makes a revolute joint rotate about an
axis w. On this joint is a lever, at the end of which another joint of the R
type is set, with axis parallel to w. A parallelogram Pa is fixed to this joint,
and allows translation in the directions parallel to w. At the end of this
parallelogram is a joint of the R type, with axis parallel to w, and which
is linked to the end effector.

This robot is marketed by the Demaurex company� DD and by ABB
under the name IRB 340� ABB FlexPicker, while CSEM� CS offers a micro
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Figure 2.6. The Delta robot (from Clavel (99)) and one of its industrial version, the
FlexPicker IRB 340 (courtesy of ABB)

version. We will see that the Delta has been used in a large number of
applications.

In term of group theory, the chain of the Delta robot constitutes a
{X(w)} generator, and therefore the intersection of 3 of those generators,
with axes that are not parallel, will allow us to obtain a generator of the
sub-group {T} of the translations in space. Another member of this family
is the Star robot (227) (figure 2.7), with the notable difference that the
Star is over-constrained (each leg restricts two rotational degree of freedom
of the platform) while the Delta is not.

It is important to remember that the Delta ancestor is a mechanism
described in 1942 by Pollard (481), intended to be used for car painting
(figure 2.7). This mechanism presents three revolute actuators that orien-
tate three arms, the ends of which are linked to the pod by three articulated
links. A problem with this design is that to get only translation of the end
effector the three distal links must connect at ball-and-socket joints that
share the same center. We have already seen the difficulty of designing such
joint, a problem that is elegantly solved by the Delta architecture.

It is noteworthy that the rotary actuator and lever part of the Delta
could be replaced by a linear actuator, as suggested by Clavel itself and
Zobel (668) (this type of Delta is sometime called a Linapod or a linear
Delta). Such a variant is currently being used for machine-tool (figure 2.86).
Note also another variant, the Triax proposed by Sheldon (figure 2.87).

Work is also going on at EPFL for the development of the Delta3, a
micro-robot based on this architecture and using flexure hinges (102),(449)∗ .
Reboulet (501) suggests a mechanism, the Speed-R-Man, the structure of
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Figure 2.7. Robots with three degrees of freedom in translation. On the left, the Pollard
mechanism (from Pollard (481)). On the right, the Star: the rotary actuators lead the nut
of a ball screw on which a parallelogram is articulated. The parallelogram at the other
end is linked by a revolute joint to the end-effector (from Hervé (227)).

which is very similar to the Delta, although the rotary actuators are re-
placed by two linear actuators acting on the same point. His mechanism
therefore is redundant, and presents interesting speed characteristics. The
interest of the redundancy lies in the fact that the maneuverability is im-
proved, and that the joint forces can be reduced for a given external force.

Another interesting member of the same family is the Orthoglide robot
(figure 2.8) developed for machine-tool application (618). The main interest
of this robot is that it presents relatively homogeneous kinematic perfor-
mances in its useful workspace.

Figure 2.8. The Orthoglide robot (from Wenger (618)).
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It is not necessary to have revolute joints to be members of the same
family. For example Kong proposes the 3-CRR, a robot with cylindrical
joints (figure 2.10) and some of its variants (326).

Another representative 3 d.o.f. robot is the Tricept that issued from a
patent by Neumann (446). This mechanism presents an end-effector that
possesses a stem which is free to translate along its axis. The stem is linked
at its base by a universal joint, forbidding the stem to rotate around its
axis; three chains of the RRPS type act on the end-effector (figure 2.9).

Figure 2.9. On the left, the Neumann patent (courtesy United States Patent and Trade-
mark Office). A stem of varying length, set on a universal joint, connects the end-effector
to the base. Three linear actuators allow the modification of the end-effector position
(from Neumann (446)). On the right, the Tricept IRB 940 from ABB (courtesy of ABB)

GEC-Marconi (now BAE Systems) uses this architecture to build a
bulky parallel-serial hybrid robot designed for assembly, the Tetrabot: orien-
tation of the end-effector was obtained through a classical serial wrist (578).
To the best of our knowledge this robot has never been marketed.

In 1992 a small company directed by Neumann, Neos Robotics (now
SMT Tricept), started marketing the Tricept TR600 with some success, and
is now producing a machine-tool five axis version, the TM 805 presented in
1998. Later on, Comau and ABB added a Tricept to their catalog under the
names HP1 and IRB 940. A similar machine, the MultiCraft 560, is also
sold by MultiCraft. Note that instead of using links with varying lengths
in the Neumann mechanism, it is possible to use fixed length links with
ends close to the base moving on a curve. For example, in the Georg V
robot, these extremities move along a tilted line (581). The Tricept is a
representative of a family of 3-d.o.f. translation robots in which a passive
mechanism constrains the end-effector d.o.f.: other members of this family
may be found on the references Web page.
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In academic studies the most studied 3-d.o.f. translational robot is the
3-UPU robot proposed by Tsai (586) (figure 2.10), which is a special case of
the family of 3-RRPRR mechanisms (note that 3-RPRRR and 3-PRRRR
may be used as well (74)∗,(171)). The academic interest in this robot is

Figure 2.10. On the left, the 3-UPU manipulator mentioned by Tsai (586): a convenient
choice of the axes of the universal joints enable the end-effector to have only translations.
On the right, the 3-CRR robot of Kong (326).

justified for various reasons:
− although Tsai has completed an extensive study of his robot (589),

strange behavior was observed in the manufactured prototypes: large
rotational motions were observed (48) (see an impressive picture of
the rotation motion in (212)). The explanation is that this robot is
very sensitive to manufacturing tolerances (212; 463) and that it is
in a singular configuration in its nominal position, and will remain
close to this singularity over large translation motion (48; 626), see
section 6.4.2.2

− another interest of this robot is that by modifying the revolute joint
axis we will get a rotational robot (229)

According to Carricato, the 3-PRRRR robot seems to be more interesting
as it does not exhibit the rotational singularities of the 3-UPU (74) (a
claim that is not exactly true (67)) while the Tricept structure seems to
have better workspace and stiffness properties than the 3-UPU , according
to the designers of the 3-UPU (294), who have also compared the workspace
and stiffness of the 3-RUU , 3-PUU (with inclined or parallel rails) and 3-
UPU robots and favor the 3-RUU (590).

2.4.3.2 Orientation manipulators

Manipulators allowing three rotations about one point represent an inter-
esting alternative to the wrist with three revolute joints having convergent
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axes classically used for serial robots.
In terms of group theory, the rotary motion of a rigid body around a

point N , {S(N)} is a subgroup. The Lie subgroups of this subgroup are
the subgroups of rotations {R(N,u)} about the axis defined by the vector
u and which contain the given point N . The intersection of three elements
{R(N,u)}, {R(N,v)}, {R(N,w)} spans {S(N)}, as long as u,v,w are lin-
early independent (a spherical pair is a special example of such intersection,
the vectors being mutually orthogonal).

A first possible use of this group theory result in a passive constraint
mechanism that allows only rotation of the platform. Three additional kine-
matics chains which are generator of the motion group {D} will be used to
actuate the platform. Figure 2.11 presents a wrist using the central mast
principle with {D} generators of the RRPS types (PRRS may also be
used) and an application with the Vertical Motion Simulator (VMS) of
NASA.

Figure 2.11. On the left, a parallel wrist with the moving plate articulated on a bal-
l-and-socket joint placed on a central mast. The universal joints are represented by a
black square. On the right, an example of application with the Vertical Motion Simula-
tor (VMS) (courtesy NASA)

The passive constraint mechanism is not necessary: for example the
central mast may rotate while it supports the platform on a revolute joint,
and two prismatic actuators allow the other rotations to take place.

Another type of generator of the subgroups {R(N,u)} are spherical
chains, that have been mentioned by Asada (19). Here three spherical chains
that share the N point will lead to a spherical mechanism. Gosselin and
his team have intensively studied the realization of a wrist based on this
principle (186; 200; 524; 526) in order to make a pointing system (agile
eye� AE). This manipulator uses three actuated spherical chains with rotary
actuators with axes converging to a point that is the center of rotation (fig-
ure 2.12). The robot mentioned by Gosselin was also studied by Alizade (6)
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Figure 2.12. Gosselin spherical wrist and its prototype: three spherical chains are used
with rotary actuators with axes converging to the center of the moving plate (from
Gosselin (186))

and Leguay and Reboulet (356) have suggested redundant spherical robots
in order to optimize the manipulator dexterity.

Vischer (596) suggested the Argos robot that possess the same structure
as the Star robot, the parallelogram translation being replaced by a rota-
tion about the motor axis (figure 2.13). The platform then turns about a
point that is common to the three axes; therefore the star layout of the axis
of the Argos joint is essential, while for the Star robot it is only a choice
in the design. A mechanism of the same family as the Argos was suggested
by Baumann (28) in his Pantoscope manipulator. Interestingly the 3-UPU ,
initially proposed as a translation robot, may also be designed as a wrist,
provided there is a specific disposition of the passive joint axis (301) (fig-
ure 2.13). But the U joint in the 3-UPU may be substituted by RR pairs

Figure 2.13. On the left, Argos, a spherical variant of the Delta robot: the steel-band
joints are used as parallelograms so that the distal link is always parallel to the motor
axis (from Vischer (596)). On the right, the 3-UPU , with the passive joint axis in a
configuration that leads to only rotational degrees of freedom for the platform.
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(leading to 3-RRPRR), while the prismatic actuator may also replaced by
an R joint, leading to a 3-(5R) structure, (137) (figure 2.14) or to a 3-
URU , also called the Dymo (665) (figure 2.15). The interest of the Dymo

Figure 2.14. Variations of the 3-UPU structure in which the U joint are substituted by
RR pairs and the P joint by RR

Figure 2.15. On the left, the 3-URU Dymo mechanism. On the right the 2 d.o.f. Om-
ni-Wrist: a clever arrangement of the passive joints and the use of two linear actuators
allows for a ± 90 degrees rotation ability without singularity (courtesy Ross-Hime De-
signs)

is that, according to its configuration, it may have different d.o.f. modes;
this has been finely analysed by Zlatanov. We present here a summary of
this analysis. If the axis of the first R joints of the U joints on the base and
on the platform are in general position, then this robot has 3 translational
d.o.f. But if the axis of the first revolute joint of the base (platform) U joint
intersects at the same point, Mb (Mp) and Mb, Mp coincide, then the robot
has 3 rotational d.o.f. Now assume that the base, platform and legs all lie
in the same plane: we get a planar 3-RRR whose d.o.f. are 2 translations
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in the base plane and one orientation around any axis perpendicular to
this plane. Zlatanov mentions also the existence of another spatial mode,
called the mixed mode, in which the platform has both translation and
rotation d.o.f. Amazingly it is shown that a transition between two modes
(e.g. translation and orientation) is possible without disassembly!

The 3-RUU structure has been proposed by Di Gregorio (133) but
some passive joints will almost always be idle (figure 2.16). Hervè (229)
has proposed another configuration of the 3-RUU without this drawback
(figure 2.16).

Figure 2.16. Two different designs for the 3-RUU wrist structure: the configuration on
the right has no idle pair

Many other structures have been proposed as wrist: 3-RSR (139), 3-
RRS, 3-CRU , 3-UPC, 3-CRC (159) and an exhaustive list is proposed by
Kong (327)∗.

Note that most of the presented structures are overconstrained, and a
real rotational behavior will be obtained only with a strict manufacturing
of the parts. Recently non-overconstrained mechanisms with asymmetrical,
non identical, legs have been proposed (303).

Finally let us mention the Omni-Wrist� OW of Rosheim with 2 d.o.f.
in rotation but with a ± 90 degrees rotation ability without singularity
because of a clever arrangement of the passive joints (figure 2.15). It has
been used for large fountain displays, antenna pointing and most recently,
biomedical applications.

2.4.3.3 Mixed degrees of freedom manipulators
The 3 d.o.f. manipulator of figure 2.17 mentioned by Hunt (250) has been
studied by various authors: Gosselin (186), Lee (355)∗, Pernette (471) (as
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a micro-robot under the name Orion), Waldron (599). The link joints with
the base are revolute, while the joints on the moving platform are ball-and-
socket joints connected to prismatic actuators allowing the variation of the
link lengths. The degrees of freedom are a translation along the vertical
axis, and rotation along the precession and nutation angles. This robot has
been used by Zhang (655) for the balancing of a spaceship arm and as a
micro-manipulator (under the name of Artisan) by Waldron and Khatib.

A structure equivalent to Hunt’s was also suggested by Lambert (340)

Figure 2.17. A three degrees of freedom manipulator mentioned by Hunt and Lee and
its application as an entertainment motion base (courtesy Visible Light� V L).

and was later studied by Dunlop (146): the prismatic actuators are replaced
by a system of articulated links that are actuated at the base by a revolute
actuator (figure 2.18). This structure has the advantage of presenting a
larger workspace, but requires more passive joints. A variant has been used
in the Dockwelder� DP European project for ship welding: the rotary actu-
ators were substituted by prismatic ones. In this project, two such tripods
were used in series and on top of them was a classical industrial arm.

Using a platform congruent to the base allows the direct kinematics to
remain very simple. A similar design was suggested by Canfield (68) under
the name Carpal wrist. It is also possible to replace the rotary actuators by
linear actuators, as we have suggested for our Mips robot (416), a micro-
robot for endoscopy with a diameter of 7 mm (figure 2.19). Instead of using
an actuator having a vertical motion, we may also choose any other axis
direction, for example horizontal, as suggested by Carretero (71) and used
in the Sprint Z3 machine tool (figure 2.85).

Lande’s mechanism (341) (figure 2.20) has two linear actuators moving
vertically articulated stems, to which links are connected by universal joints.
The other ends of the links are also connected to the moving platform by
universal joints. The third degree of freedom is obtained by the rotation
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Figure 2.18. A variant of the Hunt’s mechanism proposed by Lambert and Dunlop
and on the right another variant used in the Dockwelder project (courtesy University of
Southern Denmark).

platform

base
x

y

z

Figure 2.19. The micro-robot Mips (416). The linear actuators on the base move along
vertical direction revolute joints that are connected to fixed length links.

of a chain that allows control of the rotation of the end-effector around
the platform normal. According to this principle, mechanisms with more
degrees of freedom could be built. It should however be remembered that
such architectures lead to an important number of passive joints (18 for a
manipulator with 6 degrees of freedom).

The addition of a passive link allows us to play quite freely with the
nature and the number of resulting d.o.f., as shown in the example in fig-
ure 2.20. This robot consists of a moving plate actively controlled by 3 linear
actuators. It is also subjected to a passive constraint because it is linked
by a ball-and-socket joint to a bar that is itself subjected to constraints.
One of the ends of this bar is linked to a shuttle that is itself guided in
translation and passes through a hurdle orifice; it can therefore freely twist
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Figure 2.20. On the left, linear actuators ensure a motion of the joint centers: the
rotation around the plate normal is obtained by an articulated stem (from Lande (341)).
In the middle, a 3 degrees of freedom robot mentioned by Landsberger: the links are
wires that can roll up around drums. The tension in the wire is maintained by the
central mast that pushes passively towards the top (from Landsberger (342)). On the
right, a cylindrical robot suggested by Reboulet (from Reboulet (503)).

about this orifice center, and freely move in translation about its axis. Ac-
cording to the same principle, Reboulet mentioned an architecture where
passive constraint is exercised by an extensible bar linked to the base by a
universal joint, but unable to twist about its axis (figure 2.21).

O

T

Figure 2.21. On the left, a 3-d.o.f. structure: the central mast allows only vertical trans-
lation and is topped by an universal joint which allows only 2 rotations for the platform.
On the right, a motion base that uses a variant: the linear actuators are substituted by
a combination of a lever and a rotary motor (courtesy InMotion Simulation� IM)

Another example of this type of robot is the CaPaMan robot of Cecca-
relli (76). The initial version uses three actuated 4-bar mechanisms with a
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free-sliding ball-and-socket joint, but a later version uses a more classical
arrangement (figure 2.22).

Reboulet (503) has also suggested a robot with cylindrical motion (fig-
ure 2.20), various variants with similar structures being then proposed by
Liu (374)∗ for its Half and Hana prototypes.

Figure 2.22. The CaPaMan robot of Ceccarelli: each chain has an actuated 4-bar
mechanism and a free-rolling ball-and-socket joint (from Ceccarelli (76)). In the follow-
ing versions the free-rolling ball-and-socket joint was substituted by a more classical
arrangement

Although it is outside the purpose of this book, the Landsberger mech-
anism is worth mentioning (342)∗. It uses wires as links, a central mast
ensuring that they are under tension (figure 2.20). This type of robot is
light, but it is difficult to maintain tension in the wires.

Let us also mention a robot presented by Arun (18), made of two piled
up octahedra with a common triangular face, and having linear actuators
allowing change of the sides lengths (figure 2.57). This robot was studied
by NASA as an element of a truss (figure 2.57), and by Hertz (225) and
Reinholtz (505).

With these complex manipulators it is often difficult to determine the
d.o.f. of the platform. In order to solve this problem, Huang (245)∗ sug-
gested a screw-based method that he applied to the robot mentioned by
Lee, and to spherical ones.

2.4.4. 4 D.O.F. MANIPULATORS

We have seen in the introduction that it is theoretically impossible to design
a 4 d.o.f. with identical legs. Hence such a design will have to rely either on
a passive constraint mechanism, a specific geometry of the legs, different
legs, less than 4 legs, or a specific mechanical design.
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Mechanisms with 4 degrees of freedom appeared early in the literature.
In 1975, Koevermans (322) presented a flight simulator mechanism based
on a passive constraint system (figure 2.23). The degrees of freedom are the
three rotations and one translation about the z axis. Another robot with

Figure 2.23. Koevermans 4 degrees of freedom manipulator and its use as a flight
simulator at NLR. A passive constraint ensures that the only degrees of freedom are the
rotations and one translation about the z axis (from Koevermans (322)).

a passive constraint chain is presented in figure 2.27. One way of having
the same chains is to use flexible legs, as proposed by Rebman (498) (fig-
ure 2.24). Using less than 4 legs may also lead to a manipulator with 4 d.o.f.,
either with an appropriate actuation scheme as mentioned by Tanev (574),
or with a specific arrangement of the joint axis (664). Specific arrange-
ments to get 3T1R motion (i.e. 3 translations and one rotation, also called
Schönflies motion) have been presented in (361)∗ (figure 2.24) and exhaus-
tively by Kong (329).

Another possibility is to use 4 non identical chains as in the HITA-SST
of Clavel (101) (figure 2.25), or in the robots proposed by Chen (89) or
Liu (374) (figure 2.26).

Robots with identical chains are possible as soon as a specific arrange-
ment of the joint axis is satisfied as proposed, for example, in (361)∗ with
RPRRR or RPUR chains (figure 2.27).

As for a specific design, we may mention the H4, I4 family of robots
proposed by Pierrot and co-workers (110)∗,(333)∗,(478)∗ which uses var-
ious clever configurations of the platform to get 4 d.o.f., 3 translations
and one rotation, with a design that allows for large rotation ability (the
Twice system, figure 2.28). Hybrid mechanisms mixing serial and parallel
mechanisms are another possibility (see the references Web page).
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Figure 2.24. 4 d.o.f. manipulator. On the left, a manipulator mentioned by Rebman,
using flexible stems (from Rebman (498)). The NAOS mechanism (figure 2.71) is a
3-d.o.f. application of this principle. In the middle, a manipulator with three chains
and 4 d.o.f. (from Tanev (574)). On the right, a mechanism with revolute joints whose
d.o.f are three translations and a rotation around the normal of the platform (from Li
(361)).

Figure 2.25. 4 d.o.f manipulator, the HITA-STT of Clavel.

2.4.5. 5 D.O.F. MANIPULATORS

Robots with 5 d.o.f will also have to rely on passive constraint mechanisms,
specific geometries or design. Such a structure is of particular interest in
the machine-tool field for so-called five-axis machining. Indeed 6 d.o.f. are
not strictly necessary for machining as the rotation of the spindle adds a
degree of freedom.

Examples of robots with passive constraint mechanism (627; 652) are
presented in figure 2.29. The passive mast is interesting in term of stiffness
of the robot (roughly equivalent to a 6 d.o.f robot, except for the d.o.f.
that is constrained by the passive mechanism) but decreases the workspace
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a

b

Figure 2.26. 4 d.o.f manipulators with non identical chains (89; 374).

Figure 2.27. 4 d.o.f. robot. On the left and in the middle robots with RPRRR or RPUR
chains. On the right, a robot whose passive constraint chain leads to two rotation and
two rotations d.o.f. (from Zhang (652))

Figure 2.28. 4 d.o.f manipulator. The H4 robot of Pierrot and a detail of its platform
with the Twice system
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because of leg interferences. Another possibility is that one of the active legs
constrains one d.o.f. of the platform, as shown in figure 2.29 (176). Five

T1

T2

Figure 2.29. 5 d.o.f robots. The role of the central mast is to prohibit the rotation around
the normal to the platform (from (627; 652)). On the right, one of the legs constrains
one rotational d.o.f. of the platform (from Gao (176))).

d.o.f. may also be obtained by a specific geometrical arrangement of the
legs. Examples of such arrangements are provided in figures 2.30,2.31. A

Figure 2.30. 5 d.o.f. robots. Here a specific arrangement of the revolute joint axis allows
to prohibit the rotation of the platform around its normal (from (361)∗,(158)∗)

specific design with interconnected legs may also be used as mentioned by
Zoppi (figure 2.31), but in that case both the inverse and direct kinematics
are difficult to solve. Alternatively, a hybrid robot mixing parallel and serial
structures may be used, as suggested by Austad (20): a parallel positioning
device controls the location of a specific point of the end-effector, and a
second parallel mechanism ensures two rotations of the moving platform
(figure 2.31). A nearly similar structure has been proposed for machining
in the ITER vacuum vessel (627).
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Figure 2.31. 5 d.o.f. robots. On the left is the robot suggested by Zamanov; the sixth
degree of freedom (rotation about the normal to the moving platform) may be obtained
by yet another mechanism (from Zamanov (647)). In the middle, a 5 d.o.f. robot with
interconnected legs; the d.o.f. are the 3 rotations around O, the altitude of O and the
distance r between O and the end-effector (from Zoppi (669)). On the right,, a hybrid
structure (from Austad (20)).

2.4.6. 6 D.O.F. MANIPULATORS

The realizations of 6 degrees of freedom fully parallel manipulators are
based on the use of 6 generators of the motion group {D}, as described in
the earlier chapters. They will thus work with chains of the RRPS, RPRS,
PRRS, RRRS types. Note that these generators are all basically equiva-
lent with respect to the mobility of the platform, as the order of the joints
has no importance and a P (R) may always be replaced by a R(P ) joint.
Consequently, being given a mechanism whose legs use one of such gener-
ators. we may always derive other mechanisms just by changing the order
of the joints and by using the replacement of R(P ) joints by P (R) joints.
In terms of mobility, all the presented mechanisms using these generators
will belong to the same class as the Gough platform. But they will not be
equivalent when looking at performances other than mobility and it is thus
important to present various robots with different leg structures. There are
also partially parallel mechanisms offering more complex structures.

2.4.6.1 UPS chain robot
This architecture represented in figure 2.32 is the most frequently used in
applications (see section 2.9). This type of manipulator is usually called a
Gough platform (see the historical note on this name in the ”Introduction”
chapter), 6-UPS robot, 6-6 robot or hexapod (a word registered as British
trade mark 2153930 by Geodetic Technology in the context of machine-
tools). It is the most commonly used architecture, and has been used in
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numerous laboratories for the realization of prototypes (164; 217; 324; 499).

base

Ai

Bi

Figure 2.32. The general structure of a 6 d.o.f. parallel robot with chains of the UPS
type. The platform is linked to the base by 6 chains. The connection of the chains with
the base is usually effected with a U joint, while the chains are attached to the moving
platform by a S joint. A prismatic actuator allows the change of the lengths of the links.
On the left, the McCallion prototype (1979); the motors lead ball-screws in rotation via
a universal joint, enabling change in the lengths of the links (from McCallion (381)).

Historically, it seems that a first realization of this type of parallel
manipulator can be attributed to McCallion from Christchurch Univer-
sity (381) for a robotized assembly station. In this prototype, electrical
motors that are placed on a fixed base lead ball-screws located in the links
via an universal joint. These ball-screws enable changes in the lengths of
the links connecting the base to the moving platform (figure 2.32).

As early as the 1980’s, Fichter (163)∗ foresaw that this type of mech-
anism as well as its possible applications would be posing problems. Mc-
Callion’s concept was borrowed from Shelef’s patent (534), except that its
motors are linked to the base via a universal joint and therefore always
stayed on the same line as the ball-screws. One of the first people who built
this type of manipulator is C. Reboulet from the CERT-DERA, who devel-
oped a prototype as early as in 1985 (502). His prototype is an active wrist
with pneumatic actuators, and one version of this prototype was marketed,
although without success, under the name Space.

INRIA developed in 1986 a left hand prototype with the help of C. Re-
boulet (figure 2.33). Its structure is similar to the CERT one, although it
uses electric actuators with a stroke of 2cm. This robot was equipped with
force sensors in each link, which allows the measurement of the 6 compo-
nents of an external wrench. The ball-and-socket joints were simply made
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of universal joints; the base of the joint can rotate about an axis that is
engaged in two miniature ball-bearings set in duplex and pre-constrained.
An interesting feature of such parallel structures is the fact that they are

Figure 2.33. INRIA left hand, a parallel robot using electrical actuators with links of
varying lengths.

much less sensitive than serial robots to scale effects. We will present in
section 2.9 both huge 6-UPS robots and very small scale robots, for exam-
ple Arai’s 6-UPS micro-robot (555) with piezo-electric actuators having
a stroke of 8 micrometers, a positioning accuracy of 30 nanometers and
flexible beams as passive joints.

It seems that the Marconi company was the first to try to offer this
type of manipulator for the market. They created a manipulator, named
Gadfly, aimed at pick-and-place and electronic component assembly (487).
It seems, however, that this prototype has never been marketed.

Special layouts for the joint centers were suggested quite early: for exam-
ple in the Toro robot, designed by Zamanov (645), which possesses double
ball-and-socket joints on the moving platform or in a patent by Griffis (207)
in which the platform and the base are triangles with three joint centers
on each edge, a configuration that leads to a singular design (257). Special
layouts may also be obtained by using reconfigurable robots in which the
location of the joint centers may be modified at will, in order to opti-

mize the robot geometry for the task at hand, as suggested by Bande (25),
Ji (289)∗ and Yang (632). The modularity concept is interesting but de-
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signing algorithms for adapting the geometry to the task is not a trivial
task (286).

2.4.6.2 PUS chain robots
The first example of such architecture is the INRIA patented active wrist
(398) (figure 2.34) that shows a vertical actuated prismatic joint that is
connected to a fixed length link by a universal joint. The other end of the
link is attached to the moving platform by a S joint. This structure has been
used, for example, by Gerber Coburn for the manufacture of lenses. Such
a structure possesses the advantages of having a very low center of mass,
a very light moving mass and reduced risk of collision between the links,
compared to the 6-UPS. Note that the direction of motion of the prismatic
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Figure 2.34. The 6 degrees of freedom active wrist, the joints of which that are near
the base move vertically, using a chain of the PUS type (INRIA patent).

actuators does not matter: tilted in the Hexa-M machine-tool of Toyoda
Machine Works (figure 2.89), horizontal and parallel in the Hexaglide robot
from École Polytechnique Fédérale of Zürich (figure 2.35) (237) or vertical
with only 3 guide-ways in the Linapod (488) (figure 2.36). We may also
mention the Nabla 6 (36), with horizontal axis (figure 2.36): there are only
three distinct prismatic joint axes, with 2 Ai points sliding on the same
axis. Moreover, three of points Bi are articulated on a triple ball-and-socket
joint, and therefore are identical: the position of this common point can thus
be controlled with the help of three associated actuators, while the other
three control the platform orientation; the result is a decoupled robot, a
topic addressed in section 2.4.6.6.
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Figure 2.35. The Hexaglide robot from École Polytechnique Fédérale of Zürich and its
implementation as a machine-tool

B

Figure 2.36. On the left, the Nabla 6, a decoupled robot mentioned by Bernier (from
Bernier (36)). On the right, the Linapod robot (from Pritschow (488)).

Another interesting device is the Cobot mechanism (162): the linear
actuation is obtained by a wheel rolling on a rotating cylinder and whose
rotation axis may be modified (figure 2.37).

2.4.6.3 RUS chain robots
Hunt (250) suggested as early as 1983 a robotic architecture using this type
of chain (figure 2.38). The prototype presented in figure 2.39 was built by
Zamanov and was based on this principle.
The Delta principle was extended by Pierrot from LIRMM� LIRMM , and by
Uchiyama, who suggested the 6 degrees of freedom fast parallel manipulator
Hexa (475; 591). This mechanism differs from Hunt’s architecture because
of the position of the axes of the revolute joints on the base and of the
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φi

Figure 2.37. The Cobot mechanism. Wheels are rolling on a rotating cylinder. By
changing the angle φi of the rotation axis of the wheels, it is possible to modify the
vertical velocity of the joint (from Faulring (162)).

Figure 2.38. On the left, the robot using RUS chains as suggested by Hunt in 1983 (from
Hunt (250)). On the right, Pierrot’s Hexa robot, a generalization of the concept of the
Delta (from Pierrot (475))

location of the joint centers on the moving platform (figures 2.38,2.40).

However, this difference meets the Delta operating mode if a pair of links
performs an identical motion. It is also noteworthy that the actuated lever
motions do not have to be in a vertical plane; a version of it could thus be
built, for instance, with the plane horizontal. Several versions of the Hexa
robot were suggested with various directions for the actuator axis, tilted or
vertical (518) as in the the Rotobot� RH device distributed by Hexel with
actuated joints moving on a circular rail, figure 2.39.
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Figure 2.39. On the left, a prototype created by Zamanov and set on an architecture
invented by Hunt, where the joint points move on circles (photograph by kind permission
of Pr. Zamanov). On the right, the Hexel Rotobot: the actuated joints move on a circular
rail (courtesy Hexel)

Figure 2.40. On the left, the robot version of the Hexa. On the right, an application of
the Hexa for an entertainment simulator motion base (courtesy Servos Simulation Inc.).

2.4.6.4 Robots with miscellaneous chains
This category brings together manipulators studied within the literature
and which have actuation principles which cannot be directly linked to any
of the classifications presented earlier.

One example is the complex manipulator suggested by Han, Hudgens
and Tesar (213), where 4-bar mechanisms are used in order to move the
joint centers (figure 2.41). The same principle is used by Tsai (585) and
Tahmasebi (568): two rotary actuators allow the change of position of the
joint centers (figure 2.41). The use of flexible joints is also proposed by
Wang (605).

For certain tasks, such as assembly, it is important that the mecha-
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Figure 2.41. On the left, Han’s manipulator: 4-bar mechanisms on the base, actuated
by electric motors, move the location of the link joint centers (from Han C.S. (213)). On
the right, Tahmasebi’s robot: two rotary actuators placed in Di allow the control of the
location of the Ci (from Tahmasebi (568)).

nism stiffness (which will be studied later on) be identical in all directions.
Figure 2.42 presents an architecture realizing this aim, called Limbro, sug-
gested by Artigue (17). Redundancy may be used in order to increase the
robot workspace. Thus, Merkle (396) suggests an architecture called the
double tripod; two linear actuators tripods give five degrees of freedom to
the end-effector, and a screw system ensures the rotation about the end-
effector axis (figure 2.42).

P1

P2

Figure 2.42. On the left, the Limbro parallel manipulator architecture. The linear
actuators, rigidly attached to the base, possess at their other ends an S joint linked to
the moving platform by a P joint (from Artigue (17)). On the right is Merkle’s redundant
double tripod: the groups of 3 linear actuators allow the points P1, P2 to move in space. A
mechanism controls the rotation of the terminal axis about its axis (from Merkle (396)).
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2.4.6.5 Three-legged robots
Many authors have proposed 6 d.o.f. robots with only three legs that will
have two actuators per leg (hence they are not fully parallel). This allows
one to decrease the risk of interference between the legs (thereby increasing
the workspace size), but has the drawback of reducing the stiffness while
increasing the positioning errors. Podhorodeski (480) presents a systematic
study of possible architecture with three chains.

In this category are the robots with RRPS chains as Alizade’s manip-
ulator (5) or RPSR chains (540) (figure 2.43).

Figure 2.43. Robots with RRPS or RPSR chains, from (5), (540)

Instead of using a linear actuator in the links, the carriages may have
2 d.o.f. in the plane, as in the robot mentioned by Ben-Horin (31) and
Tsai (587) (figure 2.44) or in the SpaceFab robot of Micos (figure 2.94).

The mechanisms suggested by Kohli (323) (figure 2.45), or Behi (29)

Figure 2.44. On the left, a manipulator mentioned by Ben-Horin: three 2 degrees of
freedom planar carriages support fixed length links (from Ben-Horin (31)). On the right,
a prototype of the Technion Haifa in which the legs are inflatable.
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should also be remembered. They use double actuators which are either
linear and rotary, or linear and linear (figure 2.46). Double linear actuators

Figure 2.45. On the left, Kohli’s prototype, with linear and rotary double actuators (from
Kohli (323)); on the right, a variant with RPRS chains (Nanyang Tech. University)

Figure 2.46. On the left, Behi’s prototype, with linear-linear double actuators (from
Behi (29)) and on the right a robot with RPS chains (Ben-Gurion University of the
Negev).

are used in a robot mentioned by Byun (66) while a manipulator using
pantographs has been proposed by Ebert-Uphoff (152) with a balancing
interest as we will mention later (figure 2.47). Parallelograms were present
very early, for example in the prototype of Inoue (277), later studied by
Collins (107). They have the interest that they allow us to obtain virtual
links with lengths which have a larger range than classical mechanisms,
although accuracy suffers because of the larger number of passive joints.
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Figure 2.47. On the left, a manipulator mentioned by Byun with PPSP chains (from
Byun (66)). On the right, a manipulator mentioned by Ebert-Uphoff: in each chain two
motors control two sides of a parallelogram while the revolute joint on the base is pas-
sive (from Ebert-Uphoff (152)).

The use of 4-bars has also been mentioned in (24) for a possible appli-
cation in MEMS as the manufacturing of such hinge joints is well mastered
(figure 2.48). But 4-bars may also be used for fast robots, as the Ninja
robot (437) (figure 2.48). Let us also mention the 6 d.o.f. robot called

Figure 2.48. On the left, a 3-legged robot with only revolute joints: the robot is de-
signed for a possible use as a MEMS and in this domain hinge joint are mastered (from
Bamberger (24)). On the right, the Ninja robot, a fast redundant robot (from Nagai
(437)).

Smartee, suggested by Cleary (103) marketed without success by Hughes
Stx. The end-effector of this robot is connected to the base by three kine-
matic chains made of two links. The link that is attached to the end-effector
is connected to the preceding link by a passive revolute joint, and a dif-
ferential mechanism controls two d.o.f. of the link attached to the base
(figure 2.49).
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Figure 2.49. On the left, the Smartee robot: the differential mechanism controls the two
degrees of freedom of the first link of the three chains (from Cleary (103)). On the right,
a variant with RRRS chains (Nanyang Technological University� P MR)

Let us also cite the Turin robot, developed by Romiti and Sorli (547). In
each leg, a stack of two actuated parallelograms ensure the motion within
a plane of a ball-and-socket joint. This ball-and-socket joint is set on a
sliding device with axis perpendicular to the parallelogram plane. The robot
CaPaMan (figure 2.22) is the 3 d.o.f. version of this robot.

Another interesting mechanism addresses the workspace problem of par-
allel robots. We will indeed see that one of the main drawback of such mech-
anisms is their relatively limited workspace, especially in term of orientation
abilities. To overcome this drawback, Ryu (515) proposed the redundant
Eclipse robot with seven actuators (figure 2.50): three carriages supporting
stems move on a circular rail, and on the stems are 3 linear actuators sup-
porting three revolute joints connected to fixed length links, one of which
is actuated. The other ends of the links are connected to the moving plat-
form through ball-and-socket joints. Such a configuration allows for a full
rotation around the z axis and over 90 degrees for the other rotations. A
further development was proposed the Eclipse II (317)∗. In this version,
figure 2.51, the mechanism is no longer redundant but the use of circular
railways allows for a 360 degrees rotation of the platform.

2.4.6.6 Decoupled robots
It is noteworthy that almost all the manipulators presented so far have
actuators which influence both the position and orientation of the moving
platform. From the control view point, it may be interesting to design a ma-
nipulator where three actuators control the translation while the remaining
three control the orientations. A decoupled robot would thus be obtained.
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Figure 2.50. The Eclipse robot: three carriages supporting stems move on a circular
rail and on the stems are 3 linear actuators supporting three revolute joints connected
to fixed length links, one of which is actuated. The other ends of the links are connected
to the moving platform through ball-and-socket joints (from Ryu (515)). On the right, a
first prototype of milling machine based on the Eclipse concept.

Figure 2.51. The Eclipse II 6 d.o.f. robot and some of its possible motions (from Kim
(317))

Three different types of decoupling may be distinguished (291):

− strong coupling: each pose parameter is a function of all actuated joint
variables (e.g. a 6-UPS robot of general geometry)

− complete decoupling: each pose parameter is a function of only one
actuated joint variable

− partial decoupling: neither of these types

Note also that decoupling may occur locally (i.e. for a given pose only, see
for example the C5 robot (116))) or globally, but we will mention here only
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globally decoupled robots.
Among the partially decoupled robots a special type has attracted in-

terest: those decoupling orientation and translation. We have already pre-
sented such a robot with the Nabla 6 mentioned by Bernier (36) (fig-
ure 2.38). Another architecture presenting this characteristic was suggested
by Innocenti (264) (figure 2.52); three links share a common ball-and-socket
joint; the modification of these link lengths allows the control of the position
of the ball-and-socket joint center. The control of the three remaining link
lengths thus allows us to modify the moving platform orientations around
this center. The delicate point in the practical realization of this manipula-
tor is the design of the triple ball-and-socket joint. Another interesting
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Figure 2.52. Decoupled parallel robots. On the left, Innocenti’s robot; three actuators
allow the motion of point Q, while the other three allow the control of the rotations
around Q (from Innocenti (264)). On the right, the Tri-Scott, a variant of the Stewart
platform; the upper linear actuator controls the planar motion of the platform while the
lower actuator controls the altitude and the remaining orientation (from Zabalza (643)).

example of a partially decoupled robot is a variant of the Stewart platform,
the Tri-Scott robot (643), figure 2.52. In this robot the upper linear actu-
ators control the planar motion of the platform while the lower actuators
control the altitude and the remaining orientation d.o.f.

Another possibility for the creation of a partially decoupled robot is the
combination of two robots allowing translations; this is what Lallemand
offers with the 2-Delta (339) made of two robots of the Delta type that
fit into each other (figure 2.52). Along the same line, we may mention the
robot suggested by Ben-Horin (32) which uses two planar parallel robots,
as described by Brodsky (58) (figure 2.53).

Completely decoupled parallel robots also exist (for example the Or-
thoglide, figure 2.8) and many other alternatives for decoupled robots have
been suggested (see the references Web page). Note however a drawback
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Figure 2.53. On the left, a 6 d.o.f robot using two planar parallel robots (from Ben-Horin
(32)). On the right, Lallemand’s 2-Delta robot (from Lallemand (339)).

of decoupled robots: the wrench applied on the platform is no longer dis-
tributed on all legs, and consequently they will usually have a lower nominal
load than non decoupled robots.

2.5. Redundant robots

Although this study is not meant to deal primarily with redundant robots,
parallel robot characteristics nevertheless make them very attractive for
this particular field. We will see for example that redundancy offers a good
opportunity to deal with important and complex issues such as singularity
avoidance or solving direct kinematics, problems that will be mentioned in
the next chapters. Redundancy may also be used to design fault-tolerant
parallel robots (see for example (451) for a failure analysis).

Pierrot (478) distinguishes 3 different types of redundancy, that are
illustrated in figure 2.54 on a planar 3-RPR robot:

1. kinematic redundancy: at least one of the legs is a motion generator
with a larger number of d.o.f than necessary. This may be used for
enlarging the workspace (370), see section 6.9. Such redundancy is
found in the double tripod of Merkle (figure 2.42),

2. actuation redundancy: the end-effector is over-constrained by the ac-
tuator, as in the Archi robot of LIRMM (478) (figure 2.55). Such re-
dundancy is mostly used for singularity avoidance (370; 612),

3. measurement redundancy: the number of sensors is larger than the
number of actuated joints. This redundancy plays a role in solving the
forward kinematic problem, to reduce the positioning errors (383) and
for robot calibration.
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Figure 2.54. From left to right, kinematic redundancy, actuation redundancy and mea-
surement redundancy (measurements are indicated by dashed arrow)

Figure 2.55. The Archi robot of LIRMM, a 3 d.o.f. redundant planar robot with 4
actuators

2.6. Articulated truss and binary actuation

Articulated trusses are examples of highly redundant parallel manipulators.
One possible truss architecture simply consists in piling up parallel robots.
The now defunct Logabex company put this idea into practice with its
LX4 robot presented in figure 2.56. This type of manipulator is interesting
because it is extremely redundant, its workspace is large and the ratio (load
capacity)/mass is good: the LX4 mass is 120 kg for a transportable load of
75 kg (87). However, such a robot is difficult to control.

The truss and variable geometry manipulators (called VGT, for Vari-
able Geometry Truss) appear in the works of Miura (424), Sincarsin (543),
Reinholtz (505), and Seguchi (527)∗ to name a few (additional references
will be found on the references Web page). The truss they suggest is made
of piled up articulated octahedra with three links of varying lengths (fig-
ure 2.57). This type of structure allows us to obtain manipulators with
a large workspace, light mass and high redundancy, but their kinematics,
synthesis and control pose interesting problems. The main envisioned use
of the VGT was a spatial truss, but the truss developed by NASA was a
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Figure 2.56. The Logabex robot LX4, made by piling up left hands (photograph by
kind permission of the Logabex company).

Figure 2.57. On the left, one of Seguchi’s truss structures. Each module possesses a
octahedral structure with three variable length links (from Seguchi (528)). On the right,
an element of the truss developed by NASA, initially proposed by Reinholtz (505).

key element of a long-reach arm developed for the DOE for waste removal
(figure 2.58). We may also mention the possible use of active trusses for
modifying the shape of an aircraft wing (494).

Koliskor’s truss is also worth mentioning (324) as it introduces a new
mode of actuation by using linear binary actuators that have only 2 pos-
sibles states, either fully extended or fully retracted. This truss is made
of piled up parallel manipulators of the 6-UPS type, a structure that was
studied in detail by Chirikjian (94). The interesting feature of this ma-
nipulator is the very large number of poses it can reach (figure 2.59). For
instance, with five modules the number of positions that the end-effector
can reach rise to 230 (if we assume that the robot pose is always the same
for a given set of leg lengths, otherwise the number of reachable poses is
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Figure 2.58. A truss deployed in space and the long-reach arm developed for the DOE
for waste removal.

even higher), while their control is quite simple. A similar mechanism, but
based on a different module structure and with binary polymer actuators,
has been recently designed by the MIT under the name Binary Robotic
Articulated Integrated Devices (BRAID), figure 2.59,(211). Binary robots
may also be an interesting solution for micro-positioning. For that purpose
Culpepper proposes using Discrete Nano-Actuation Technology (DNAT)
actuators (113). The moving part of the actuator is connected to its base
by 2 springs with different stiffnesses. Opposed constraint elements, such
as electrical magnets, may attract the moving part. According to the ac-
tuation scheme, the actuator has 4 states. Although the kinematics and

Figure 2.59. On the left the poses that can reach a binary robot with 3 elements (from
Ebert-Uphoff (151)). On the right, the BRAID mechanism of MIT.

workspace analysis of binary manipulators are complex, as mentioned by
Ebert-Uphoff (151) and Lee (351)∗, it may be believed that they are ap-
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propriate for many applications (433). Indeed they offer a low-cost, rugged
solution for fast pick-and-place or spatial application.

2.7. MEMS and micro-positioning robots

Parallel robot were considered early for application as Micro Electro Me-
chanical Systems (MEMS). Probably one of the first such systems was
proposed by Behi (30), who uses polysilicon micromachining for designing
a passive planar 3-RRR mechanism. The joints that were used were the
same as those used at the macro scale. But an interesting point is that
the small motion of the joints allows us to use flexure hinges, as shown in
figure 2.60 with a planar 3-PRR robot. Merkle also proposed very early
a micro hexapod (396) (figure 2.60). Parallel robots are also often used

Figure 2.60. On the left, a 3-PRR planar mechanism and on the right a proposal of a
micro hexapod (from Merkle (396)).

for micro-positioning as in the Physik Instrumente F206 based on the ac-
tive wrist concept (figure 2.61). Fine positioning devices may be designed
to have a high stiffness, for example Portman (482) proposed a ”rigid”
Gough platform in which motions are obtained by small variations of the
leg lengths through the deformation of a hollow cylinder under hydraulic
pressure and elastic deformation of the attachment points of the leg. An-
other interesting device is the 6 d.o.f. HexFlex which uses a planar compliant
mechanism (114)∗. Three magnetic actuators in the mechanism plane act as
linear actuators in a 3-PRR planar robot, while three magnetic actuators
are perpendicular to the mechanism (figure 2.62) (this robot has therefore
some similarity with the Stewart platform). Another interesting device has
been proposed by Culpepper (115), figure 2.63, with two possible actuation
schemes. In the first scheme, balls are attached to the platform and slide
on grooves whose sides are connected to linear actuators. In the second
scheme, an eccentric ball-shaft is connected to a rotary-linear actuator.
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Figure 2.61. The F206 micro-positioner of Physik Instrumented based on the active
wrist concept (courtesy Physik Instrumente)

Figure 2.62. The HexFlex 6 d.o.f robot for micro-positioning. The planar compliant
mechanism on the left is deformed by 6 magnetic actuators, 3 in the mechanism plane
and 3 perpendicular to the plane

Figure 2.63. Two actuation schemes for a 6 d.o.f. robot based on the motion of balls in
a groove. On the right, the sides of the groove are linearly actuated (A), and on the left,
an eccentric ball-shaft connected to a rotary-linear actuator allows control of the motion
of the platform (from Culpepper (115)). The picture on the right shows a prototype of
concept (A) using piezo-electric actuators.
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2.8. Wire robots

The replacement of the rigid links by wires that can be coiled or uncoiled (or
any other wire shortening method, see (538) for a twisting wire actuation
scheme) may have interesting advantages:

− a larger workspace, as wires allow for large changes in the leg lengths
and simplify the management of leg interference

− a smaller mobile mass that favor high dynamics
− low interaction with the user, that may be useful for haptic devices.

However, wires impose a constraint: they can pull but cannot push. This
constraint will play an important role in the calculation of many of the
performances of the robot: for example workspace computation cannot be
based only on the allowed change in the leg lengths, but must take also into
account the statics of the robot. This issue will not be addressed in this
book, but useful references on the subject can be found in the references
Web page.

Apart from the robot proposed by Landsberger (342) (figure 2.20), the
use of wire robots was suggested by Albus (4)∗ and his team at the National
Institute of Standard and Technology (NIST) in order to realize a crane in
the Robocrane project. For this system, two platforms shaped like equilat-
eral triangles are connected by 6 wires that can coil and uncoil. The whole
system is placed at the end of a classical crane: a semi-rigid mechanism is
thus obtained. It allows control of both translation and rotation, which is an
unusual feature for cranes in general. Target applications are manipulation
of ship components, ship repairs (”Flying Carpet” project), beam assem-
bly (application of wire robots in the building industry has already been
mentioned by Higuchi (235) and Ming (421)∗) and waste management. In
the shipping trade, August Design Inc.� WC uses a parallel crane for the
loading of ships, and particularly for automated cargo transfer (AACTS
system: Automated All-weather Cargo Transfer System ) and intermodal
transfert (Direct Acquisition Rail To Ship, DARTS system).

Other applications of wire robot are tasks involving high speed: ultra-
fast assembly (with the Falcon suggested by Kawamura (305), figure 2.65)
or vibration testing (with the Segesta robot of Duisburg University (236)∗,
figure 2.65).

Another possible use of wire robots is as a measuring device for the pose
of objects: this was suggested by Geng (182), Zhuang (660), Sheldon (533),
and more recently by Thomas (576) and Williams (622). A related appli-
cation is the EasyTeach device proposed by Fanuc Robotics for trajectory
teaching: the 3-wires system allows one to determine the position of the
painting tool, while a gyroscopic head measure its orientation (figure 2.66).
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Figure 2.64. On the left, the NIST Robocrane (courtesy NIST). On the right, the
DARTS system (courtesy August Design)

Figure 2.65. On the left, the wire robot Falcon (from Kawamura (305)). On the right,
the Segesta robot of Duisburg-Essen University: this robot has been used for vibration
testing (from Hiller (236)).

The high speeds of wire robots offer possibilities for simulators. This is
illustrated by the SACSO robot that will be used to test a plane model in a
wind tunnel (338). Wire robots may also be used to design a virtual reality
motion base with the advantage of a larger workspace (567).

Finally a very promising application of wire robots is the SkyCam� SC,
a 3 d.o.f. wire robot with a wrist head mounting a camera that allows a
spectacular overview of sports events (figure 2.66).
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Figure 2.66. On the left, the Easyteach device, here seen from above, used for trajectory
teaching. The wire system allows the determination of the location of a painting tool
(courtesy Fanuc Robotics). On the right, the SkyCam wire robot, a 3 d.o.f. robot allowing
spectacular overviews of sports events (courtesy CFInFlight Ltd)

Figure 2.67. The SACSO wire robot for testing a plane model in a wind tunnel (copyright
Onera).

2.9. Examples of applications

The number of applications in which parallel structures have played a role
is so large that we cannot mention them all. We will present a few repre-
sentative examples.
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2.9.1. SPATIAL APPLICATIONS

Parallel mechanisms have been proposed for spatial devices for a long time:
a very early application had actually been studied for the lunar module
landing gear (510).

The truss structures mentioned earlier are particularly adapted to the
building of re-configurable spatial structures (562)∗, and inflatable hexapods
have been considered for the deployment of large lightweight structures for
space use (35).

A simulator for the study of robotized assembly in space has been de-
veloped, for example the 6-UPS robot CKCM studied for the NASA God-
dard Space Flight Center by Nguyen and his collaborators (448)∗. Simu-
lation of micro-gravity to test a vibration isolation system was proposed
by Idle (262), while Dubowsky (143)∗ designed the VES simulator, where
a parallel robot was used for the simulation of the behavior of a serial
robot, and for the study of the impacts between a free object in space and
a structure.

A tendon suspended platform robot, Charlotte, was designed by Mc-
Donnell Douglas (now Boeing) to automate crew tasks, and flew in the
space shuttle mission STS-63 of February 1995 (577) (figure 2.68).

Figure 2.68. The Charlotte tendon suspended platform robot designed by McDonnell
Douglas that has been tested in the space shuttle mission STS-63

Another application of parallel robots, which does not exactly enter
the field of spatial activities, could be that of aerial pointing devices, as
suggested early by a group at Canterbury University� NZ (147); these are
now commercially available (figure 2.69).

Along the same lines very successful utilisation of parallel structures is
as a pointing device for telescopes. Almost all recent land-based telescopes



72 CHAPTER 2

Figure 2.69. An example of use of a parallel robot for the control of antenna orientation.
Note the small dimension of the actuators compared to the dish (courtesy IN-SNEC� IS)

use hexapods, either as a secondary mirror alignment system (Telescopio
Nazionale Galileo, University of Arizona MMT, both designed by ADS
International, UKIRT, the ESO VISTA� TH or the GRANTECAN on the
Canary Islands, figure 2.70), as a primary mirror pointing device, or as a
scientific instrument (figure 2.71). Let us also mention the possible use

Figure 2.70. Hexapod used for secondary mirror alignment: on the left at the United
Kingdom Infra-Red Telescope (UKIRT) and on the right at the Telescopio Nazionale
Galileo (courtesy ADS International� ADS)

of wires robots and 6-UPS structures for a very large radio telescope in
China (558)∗.
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Figure 2.71. On the left, a telescope pointing system (courtesy Vertex
Antennentechnik� V A) that has been installed at the Cerro Armazones observatory in
Chile. On the right the 3-d.o.f. tip-tilt-piston mirror NAOS mechanism for the VLT–
Naos field selector: three linear actuators on the base each translate a steel wire rigidly
connected to the mirror mount; the flexibility of the wires allows one to control the
orientation/vertical translation of the mirror (courtesy of CSEM� CSN , Switzerland)

Parallel structures may also be used for satellite instrumentation. A
parallel robot has been considered for the SAGE III experimentation, and
a version that should be mounted on the ISS has been developed for ESA
by ADS International (figure 2.72).

Figure 2.72. A hexapod for the pointing of the SAGE III instrumentation (courtesy
ADS International)
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2.9.2. VIBRATION

The possible high bandwidth of parallel structures make them good can-
didates for vibration damping. Although such applications have been con-
sidered for many years (180)∗ theoretical studies are still going on (332),
(394)∗, (529); active vibration suppressors are now commercially available
(figures 2.73,2.74).

Figure 2.73. On the left, the vibration damper of the University of Wyoming uses voice
coil actuators (from McInroy (394)). On the right, an active hexapod of MicroMega
(courtesy Micromega Dynamics� MD)

Figure 2.74. The vibration isolator PH1 and PHEX1 of CSA Engineering (courtesy
CSA Engineering� CSA)

An interesting example is that of the VISS (Vibration, Isolation, Sup-
pression and Steering System)� V ISS, developed jointly by the American
Air Force, Honeywell, Trisys and JPL in order to isolate on-board mea-
surement systems (whether optical, laser, etc.) from the body of a satellite.

It has been used very successfully for various satellites, and research
is still going on in this domain (520): the sequel of the VISS, the HXA



STRUCTURAL SYNTHESIS AND ARCHITECTURES 75

(Hexapod Assembly) has been used on board the PICOSat launched in
2001� HXA. We may also mention the hexapod of Energen, using magne-
tostrictive actuators� EN . Not all vibration isolator have 6 legs: figure 2.75
shows an octopod that was used in 1997 and 2002 during the Space Shut-
tle missions STS 82 and STS 109 to isolate the shuttle payload. Parallel
structures may also be used to submit components to vibration testing.
For example OHE Hagenbuch� OHE proposes the hydraulic Hexamove (fig-
ure 2.75).

Figure 2.75. On the left, the Hagenbuch Hexamove in a vibration test. On the right, an
octopod used during a space shuttle launch (courtesy OHE Hagenbuch, CSA).

2.9.3. MEDICAL APPLICATIONS

Robots are slowly entering the medical field with systems such as the Da
Vinci (Intuitive Surgical) or Zeus (Computer Motion) robots. Parallel struc-
tures play also a role in this evolution and their potential use was mentioned
early on. For example in the Crigos system of Brandt (55), a parallel robot
was used for orthopedic surgery operations, while the INRIA active wrist
has been successfully employed for ophthalmological surgery operations on
dogs (205). But as for their serial counterpart not many of the laboratory
prototypes have found their way into the field (although research is still
going on (360; 362; 613)) but we may mention two examples of such use.

In the SurgiScope system provided by ISIS Robotics� ISIS, a Delta type
robot is used as a microscope stand (figure 2.76).

Another example addresses one difficulty for surgical robot which is to
follow the patient’s motion. This has motivated the development of the
MARS robot which has a 6-UPS structure (537); the robot is directly
mounted on the patient’s bony structure near the surgical site. This robot
has been used as a surgical tool guiding spinal pedicle screws placement (fig-
ure 2.77), and is sold by Mazor� MAZ as the Spine Assist robot. A similar
robot for knee arthroplastry, the MBARS (Mini Bone-Attached Robotic
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Figure 2.76. On the left, is the ISIS/SurgiScope system using a Delta robot as microscope
stand (here at the Val de Grâce hospital in Paris, courtesy of ISIS). On the right, is the
CMU MBARS (Mini Bone-Attached Robotic System).

Figure 2.77. The MARS/Spine Assist robot for spinal surgery (courtesy of Mazor
Surgical Technologies)

System) is currently being developed at CMU� CMU (figure 2.76). The
Spine Assist and MBARS may indicate a trend toward another approach to
surgical robotics, based on small, adaptive and relatively low-cost robots,
compared to expensive, large scale structures (see for example the surgical
robot Romed proposed by the Fraunhofer IPA, figure 2.78, for the same
purpose).



STRUCTURAL SYNTHESIS AND ARCHITECTURES 77

Figure 2.78. On the left, the Romed surgical robot proposed by the Fraunhofer IPA.
On the right, the HexaPOD 6 d.o.f. robotic treatment couch for patient positioning dur-
ing radiation therapy (courtesy Medical Intelligence� MI) with a ± 3 degree orientation
ability, ± 30 mm translation motion, a 0.1 mm resolution and a load of 185 kg

It is possible to use another advantage of parallel structures: compared
to their serial counterpart they are much less sensitive to scaling effect, and
are therefore appropriate for micro-robots. For medical applications this
is appropriate for minimal invasive surgery, especially endoscopy. Wend-
landt (616) built an endoscope active head made of a 3 degrees of freedom
robot that is actuated by wires� BU . We have suggested another solution for
an endoscopic head with the Mips 3-d.o.f. robot illustrated in figure 2.19,
which uses electrical motors (416).

A chapter of the references Web page is devoted to medical applica-
tions; apart from the use of parallel structures in various medical fields we
will just mention that kinematic of parallel structures are also used for a
better understanding of the kinematics of complex human joints such as
the knee (466)∗ or the shoulder complex (358)∗, for correction of bone-
deformities (134; 184; 279) (replacement of the Ilizarov apparatus by an
hexapod), for rehabilitation and sports training with the Caren platform of
Motek� MO (figure 2.82), and for mouth opening and closing training (570)∗.

2.9.4. SIMULATORS

After the initial proposal of Stewart, there have been numerous develop-
ments of parallel robots for flight simulators (322). Nowadays, many com-
panies are building virtual reality motion simulators, not only for aircrafts
but also for ships, train, truck driving� INRT ; this sector is probably the
one in which parallel structures are the most successful. We mention CAE
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(Canada)� CAE, Thalès (France)� TH , Frasca (USA)� F RA. An example of
such a simulator is presented in the photograph 2.79. The largest driv-

Figure 2.79. The Airbus A340 simulator (realization THOMSON-CSF, photograph by
P. Palomba).

ing simulator is the National Advanced Driving Simulator (NADS) at the
University of Iowa (figure 2.80)� NADS.

Figure 2.80. The NADS driving simulator at the University of Iowa
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One impressive parallel manipulator, the Turret Motion Based Sim-
ulator (TMBS) was built by the US Army Center for Tanks Research
(TACOM)� TMB . The actuators are hydraulic, the carrying capacity is 27
tons, with vertical accelerations of about 4-6 g. The aim is to test the er-
gonomics of the interior of the tank, and to study arm stabilization systems
(figure 2.81). A surprising simulator is Persival, initially developed by the
french École Nationale d’Équitation (figure 2.81): it aims at giving novice
horse riders a preliminary training without putting a good horse education
in jeopardy; it is now commercially available� PHS.

Figure 2.81. On the left, the Turret Motion Based Simulator of the US Army TACOM.
On the right, the horse simulator Persival from the École Nationale d’Équitation, built
in collaboration with ENAC (photograph E.N.E.).

Other surprising simulators are the bicycle simulator developed by KAIST
in Korea (figure 2.82), and the Caren system of Motek which is used for
sports training and medical rehabilitation.

2.9.5. INDUSTRIAL APPLICATIONS

Historically, robotic parallel structures were first designed for assembly
tasks (381). Numerous feasibility demonstrations of assembly (with or with-
out force-feedback) have been made by Pierrot (476)∗, Reboulet (499)∗
and ourselves, to name a few. It must be recognized that assembly is by
no means the largest field of industrial application for parallel structures
(although it may be thought that assembly may become important for
the development of MEMS or for the assembly of large aerospace com-
ponents (59)). We will present here industrial domains in which parallel
structures play, or will play, an important role.
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Figure 2.82. On the left, a bicycle simulator (courtesy KAIST). On the right, the Caren
motion base used for sports training and medical rehabilitation (courtesy Motek).

2.9.5.1 Machine-tool
Among the applications of parallel robots the one that may have the largest
economic impact is in machine-tools. The first milling machine was pre-
sented by the Giddings & Levis company (now part of Thyssen Krupp)
at the IMTS machine-tool exhibition in Chicago in 1994; it was the main
attraction, under the name Variax (figure 2.83). It was based on the prin-
ciple of the Gough platform, thus realizing the vision of the reviewers of
Stewart’s paper. According to its manufacturer, despite the fact that the
machine possesses 6 degrees of freedom, it was 5 times stiffer than a classical
machine and had much superior advance speed.

Figure 2.83. The Variax of Gidding & Lewis, the first industrial parallel milling machine
presented in 1994 at IMTS

Although we will present promising machine-tools based on parallel
structures, only a few are already in use in industry. Various factors ex-
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plain this slow progression:
− after only 10 years of development such structure have not reached the

level of sophistication of classical machines with centuries of experience
− the properties of parallel structures are fundamentally different from

their classical serial counterparts. This has often be neglected by man-
ufacturers that have focused mainly on designing the mechanical com-
ponents while discarding a more global design approach. This has led
to the development of prototypes with disastrous design errors (on that
topic let us quote Paul Sheldon, the designer of the Variax: ”there have
been so many poor designs–designs that ignore fundamental engineer-
ing truths–that the machines now have a reputation for not being stiff
and not being accurate”)

− parallel robots are intrinsically non-linear, while the CNC controllers
that are used to control parallel structures have been designed for
linear machines. It is not necessary to be an expert in control the-
ory to understand that using a classical CNC controller for a parallel
robot will not allow one to get the best out of the machine. We have
conducted an extensive simulation of the whole manufacturing sys-
tem (CAD, controller and the parallel machine) including all possible
source of errors, and we have studied typical manufacturing trajecto-
ries. For the positioning error (i.e. the maximum distance between the
desired trajectory and the real one) the result is that, provided the
machine is well designed, (a complex issue, see the ”Design” chapter),
10 to 20% of the errors come from the CAD system, 70% from the
control, while only 10% are induced by the machine itself. Hence it is
clear that ad-hoc controllers for parallel structures must be developed,
and that the output of the CAD system must be adapted for a parallel
machine.

The potential use of parallel structures in the field of machine-tools has
motivated a large research effort, especially in mechanical components, vi-
bration control, and for the synthesis of structures with fewer than 6 d.o.f.
Indeed most machining tasks require only from 3 to 5 d.o.f. (although we
have already seen that redundancy may have advantages). We will men-
tion here only industrial products, although a large number of academic
prototypes have been developed (for example we have already mentioned
the Orthoglide, figure 2.8 and the Eclipse, figure 2.50) and can be found
in the corresponding chapter in the references Web page. We must also
mention that some industrial products that were proposed in 2000 are no
longer available, either because the focus of the companies has changed
or because in the fast-moving machine-tool market several companies have
disappeared.

Machine-tools with 2 d.o.f. planar parallel structure are commercially
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available. We may mention for example the Genius 500 of Cross Hüller (part
of Thyssen Krupp) or the Trijoint 900H of Kovosvit Mas (figure 2.84).

Figure 2.84. On the left, the Genius 500� G500 (courtesy Cross Hüller) and on the right,
the Trijoint 900H� 900H (courtesy Kovosvit Mas)

Both machines use PRRP chain allowing to get 2 planar translation
d.o.f. for the spindle.

Various machines with parallel 3 d.o.f. have been proposed: the Tricept
that we have already presented (figure 2.9), the Sprint Z3� Z3 of DS Tech-
nology with 2 d.o.f. in orientation (± 45 degrees) and one translation (up to
370 mm), figure 2.85, both being compared in (629); the SKM 400� SKM of
Starrage-Heckert with a traverse rate of 100 mm/mn, the linear Delta type
Quickstep HS500� HS of Krauseco & Mauser, Index V100, figure 2.86,� V 100

and Urane SX of Comau.

Figure 2.85. On the left, the Sprint Z3, 2 d.o.f. in orientation, 1 in translation (courtesy
DS Technologie). On the right, the SKM 400 (courtesy Starrag-Heckert).
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Figure 2.86. The linear Delta type V100 (courtesy Index).

In a recent interview Paul Sheldon, one of the prime movers behind the
Variax machine, as former vice-president of Research of Giddings & Lewis,
mentions that the future may lie in 3-axis parallel structures, because for
metal-cutting machines the number of 3-axis machines far exceeds 5-axis
ones. A direct consequence is that he has patented the Triax machine that
apparently may be related to the Delta, although the actuation scheme is
different (figure 2.87).

Figure 2.87. On the left, the 3-axis machine Triax patented by Sheldon. On the right,
the DiGihex hexapod of FachHochSchule Bielefeld� F HB.

An interesting 5-axis machine is the P800/P2000 of Metrom; this has
a clever head mechanism that allows it to use only 5 legs (figure 2.88).
More classical 5-axis machines are the Octahedral Hexapod of Ingersoll (now
part of the Camozzi Group), the Mikromat 6X� MK with seven legs (fig-
ure 2.90), the Okuma Cosmo Center PM-600� OK (figure 2.91), the HexaM
of Toyoda (figure 2.89), the CMW 380� CMW which has been developed
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Figure 2.88. The 5-axis P800 machine-tool. The head mechanism with 3 legs attached
to revolute joints sharing the same axis allows it to use only 5 legs (courtesy Metrom)

with the help of various laboratories including INRIA, the Hexamech-1 of
the Savelovo Machine Building Company� HS1, a hexapod proposed by the
Russian company Lapic, the Pegasus� PR of Reichenbacher (figure 2.89)
and the DR Mader Hexapod� DR, a company that also produces simulators,
(figure 2.92).

Figure 2.89. On the left, the Pegasus (courtesy Reichenbacher). On the right, the HexaM
of Toyoda: the axis of the linear actuator is tilted.

We may also mention a Tricept machine sold by the Norwegian company
MultiCraft under the name MultiCraft 560� M560 whose main application if
the grinding of propellers, although it is unclear if this machine is still sold
by this company, Greif Robot Schleifsystem is using it in its robotic grind
station.

Research is still going on to improve these parallel machines. European
funded research projects have been devoted to this subject: ROBOTOOL�RT

and MACH21� M21. National initiatives have also taken place (for example
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Figure 2.90. On the left, the Octahedral Hexapod of Ingersoll (photo by Kathie Koenig
Simon/NIST). On the right, the 6X (courtesy Mikromat)

Figure 2.91. The Okuma 5-axis Cosmo Center PM-600 and a detail of its head (courtesy
Okuma)

Figure 2.92. On the left, the CMW 380 (courtesy CMW). On the right, the DR-Mader
hexapod (courtesy DR-Mader)
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in Germany with the Dynamil project� DY funded by the BMBF which led
to the design of the Linapod, the Hexact and the GeorgV machine-tool, or
in France with the ROBEA project funded by the CNRS) but not all of
them have been completed (for example the consortium led by the San-
dia National Laboratories was disbanded due to funding problems after
only one year). The main research axes are vibration control (with the
use of of micro piezo actuator (141)), calibration (we will devote a chapter
to this subject), stiffness (243), trajectory determination (532), accuracy
analysis (468) and design (a chapter will deal with this subject). Beside
the machines designed for relatively heavy-duty, we must also mention that
smaller machines for soft material (such as wood) may be designed, see for
example the LME project� LME. It must be noted that it is in the field
of machine-tools that the largest number of configurations for the attach-
ment point on the base and on the platform have been investigated, see
for example the Metrom or Mikromat machines or the Digihex hexapod of
FH Bielefeld (figure 2.87) with its 6-3 arrangement. We will see that these
arrangements have an important influence on the performance of machines.

In the chapter ”Singular Configurations” we mention some very special
Gough platforms which may be of interest in manufacturing processes.

2.9.5.2 Positioning devices
Fine positioning devices are favorite parallel robots applications. Several
companies offers fine positioning devices and we will mention some of them:
− Physik Instrumente� PI offer a large panel of devices: M-840, M-850

and M-824 hexapods, Gough platforms showing a resolution better
than 1 micrometer, F206 manipulator, based on the principle of the
INRIA active wrist (figure 2.61) and the P-857 nanopositioning device
with flexure hinges

− Micos� MI proposes the Paros positioning device with a repeatability
of ±5µm for a 350 × 350 × 80 mm workspace(figure 2.93) and the
SpaceFab for fiber optic alignment with a repeatability of ±0.5µm for
a 25.4 × 25.4 × 12.7 mm workspace (figure 2.94).

− Alio� AL exhibits the HR4 hexapod with a repeatability of ±1µm for
a 100 × 100 × 20 mm workspace(figure 2.93)

− Hephaist Seiko proposes various 6 d.o.f. positioning robots (F6, SWF6)
with a travel range of ±15 mm and ± 15 degrees and 3 or 4 d.o.f. robots
NAF3� HS

Many other companies produce on-demand positioning hexapods (see for
example the piezo-actuated hexapod of Marco� MA).

Let us also mention the EuropeanSynchrotronRadiation Facility (ESRF)
positioning devices studied in collaboration with INRIA. The ESRF syn-
chrotron is used for the production of an X-ray beam that is very finely
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Figure 2.93. On the left, the Paros robot (courtesy Micos). On the right, the HR1 robot
(courtesy Alio Industries)

Figure 2.94. The SpaceFab robot, a 3-PPS robot for fiber optic alignment (courtesy
Micos).

adjusted in frequency and on which experimentation chambers are inter-
posed. This beam is focused with the help of a specific optical device which
must be positioned extremely precisely. It should therefore be placed on a 6
d.o.f. positioning device. The weight of the optical device may vary between
500 kg and 2500 kg. Its motions need to be controlled with an error less
than a micrometer within a restricted space (typically, a cube whose sides
are a few centimeters long). Our study showed that these conditions could
be satisfied, and the ESRF realized several prototypes with repeatability,
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measured with a load of 230 kg, better than 0.1 micrometer and 1µrad,
and a first resonance peak at 61 Hz (109). Over 40 hexapods of this type
are now in use at ESRF. A similar parallel robot has been studied for the

Figure 2.95. The European Synchrotron Radiation Facility positioning device. This
robot moves loads that weigh up to 500 kg with an accuracy better than one micrometer.

Laue Langevin Institute for the SALSA project (Strain Analyser for Large
& Small scale engineering Applications)� ILL.

2.9.5.3 Other industrial applications
The high positioning accuracy and large stiffness of parallel robots should
mean they will become useful instruments in various industrial fields.

Part handling and spot welding are domains in which parallel robot
may play a role. Two companies already provide robots for such applica-
tion: Fanuc Robotics with the F-200i,� F200 and Hexel with the Hexabot
(figure 2.96), although the later robot is more oriented toward machining.
An example of the use of the F-200i in the automotive industry is shown
in figure 2.97, and some features of both robots are presented in table 2.1.
Note that the load of the F-200i is 100 kg for a 190 kg weight (load/mass
ratio of 0.526) while the Hexabot has a load of 91 kg for a mass of 450 kg.
Hence the load/mass ratio is 0.526 for the F-200i and 0.202 for the Hexabot;
this ration are much higher than their serial counterparts (see table 1.1).

One of the most successful applications for parallel robots is in pack-
aging, especially with the Delta robot, whose very high transfer rate and
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Figure 2.96. On the left, the Fanuc F-200i (courtesy Fanuc Robotics,) and on the right,
the Hexel Hexabot (courtesy Hexel)

Robot translation (mm) orientation load Repeatability

F-200i ± 750(X-Y), 1500(Z) NA 100 kg ± 0.1mm

Hexabot ± 152.5(X-Y), 178(Z) ± 25 degree 91 kg 10 µm

TABLE 2.1. Some performance indices for the Fanuc F-200i and Hexel Hexabot

Figure 2.97. An example of engine block handling and deflashing with Fanuc
M-900iA/350 serial robot and F-200i parallel robot (courtesy Fanuc Robotics)
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high accuracy allows the manipulation of fragile objects, such as those that
are met in the food industry. Figure 2.98 presents examples of such appli-
cations.

Figure 2.98. The Delta robot being used for packaging in the food industry (courtesy
Demaurex and SIG Robotics)

The high accuracy of parallel structures makes them good candidates for
measuring machines. This application has been mentioned for wire robots
but rigid legs may be used as well (figure 2.99). The Lapic Company of

Figure 2.99. On the left, the measuring machine HCCM developed by the University
of Florida and Perry Automation� PA with 5 actuated legs and a passive one. A laser
interferometry system allows to measure the leg lengths (courtesy Perry Automation).
On the right, the KIM 750 measuring machine of Lapic company, Russia� LA

Russia is also proposing the KIM 750 measuring machine (figure 2.99).
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We will see also that parallel structures are also very appropriate for
force and vibration measurements. This was used very early (1990) by
Schönherr (523) to test small flight aircraft (figure 2.100). The FCS� F CS

company has developed a large number of test rigs using force measure-
ments (figure 2.100), and also numerous simulators.

Figure 2.100. On the left, a test device for flight by Schönherr (1990). On the right, a
tire test rig (courtesy FCS)

Parallel robots have also been used in miscellaneous applications: footwear
testing (426), porcelain decoration with the Copra hexapod� PO, lens man-
ufacturing with the Hexapod of Gerber Coburn� GC (a license of the INRIA
active wrist). The very high speed of the Delta robot has also been used for
pick up of microtubes for biological screening tests (100 000 pick ups per
day according to RTS Life Science� BS) or for high-speed packaging (Delta
C1000/C2000 of Phoenix Packaging Systems� PD).

2.9.6. MISCELLANEOUS APPLICATIONS

Parallel robots are in use in many different application domains, and we
will now present some examples, without pretending to be exhaustive.

Much research work has been devoted to the use of parallel structures as
haptic devices or joysticks (see the corresponding chapter in the references
Web page). The high accuracy and force sensitivity is an advantage in such
applications while the smaller workspace compared to serial haptic devices
is a disadvantage. An example of such a device, the Omega� OM of Forced-
imension, based on a Delta robot, is presented in figure 2.101. An original
application is the elevator of Hydro, which is used for the installation of
the main landing gear of the Airbus A380� ELG.
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Figure 2.101. On the left, the Omega, an haptic 3 d.o.f device based on the Delta
structure (courtesy Forcedimension). On the right, an elevator for the landing gear of the
Airbus A-380 (courtesy Hydro-Gerätbau)

In the leisure industry, numerous parallel structures are used for motion
ride simulators. Many companies are offering such motion bases in various
dimensions, and this domain is one of the most successful for parallel struc-
tures. We mention AI Group that has designed the Disney-MGM Star Tour
simulator (figure 2.102), Flight-Avionics� F A, Servos Simulation� SMB (fig-
ure 2.40), Virtogo� V MP with a pneumatic motion base. Many of them are
based on Moog� MO or Rexroth� REX Hydraudine motion bases, electric or
hydraulic, some of them with nominal loads well over 10 tons.

Figure 2.102. On the left, the seven passenger StarGazer motion base. On the right,
the Disney-MGM Star Tours motion base installed in 1987 (courtesy AI Group� AI)
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The Cinaxe cinema in La Villette is a good example: 60 spectator seats
move as the film is projected on a hemispherical screen.

Other original applications are the munition loader of Bryfogle (63),
earthquake simulation (168) and a palm-tree climber (8).

Lastly, we conclude this section with the mention of the existence of
a learning set, the EX 800, distributed by DeltaLab� DEX, and made of a
Gough platform with electric linear actuators that is controlled by a PC,
and of a model allowing easy changing of the location of the passive joints.

2.10. Robots studied in this book

In order to illustrate parallel robot problems, our study will focus on

− planar robots: the 3-RPR robot, figure 2.2
− less than 6 d.o.f.: the 3-UPU robot, figure 2.10
− 6 d.o.f. robots: the 6-UPS with 3 variants presented in figure 2.32.

They all possess a planar base and moving platform, but differ in their
joint center layouts. The first robot, called MSSM, has a triangular
base and end-effector, like the Bricard articulated octahedron (56).
The second robot, called TSSM, has a triangular end-effector and a
hexagonal base. The third is the SSM which has two hexagonal plat-
forms.

− 6 d.o.f. robots: the 6-PUS presented in figure 2.34 sometime men-
tioned as the active wrist.

2.11. Exercises

Exercise 2.1: Show that the 3 degrees of freedom manipulator of
figure 2.17 possesses an Earl parallelism index of 1.
Exercise 2.2: Show how taking geometry into account influences calcu-
lations on Lambert robot mobility (figure 2.17).
Exercise 2.3: Determine how the joint axes in Lambert’s structure may
be defined so that the platform d.o.f. are a rotation around a y axis and
translation along y, z axis
Exercise 2.4: Calculate the mobility of Gosselin’s spherical robot (pre-
sented in figure 2.12).
Exercise 2.5: Show that the robot mentioned by Lee (figure 2.17) is a
fully parallel manipulator, as defined by Earl.
Exercise 2.6: Show that the Stewart platform has an Earl parallelism
index of 1 although it is not a fully parallel robot.
Exercise 2.7: Show that the Hexa robot is fully parallel, as understood
by Gosselin.
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Figure 2.103. The most studied manipulators in this book: SSM, TSSM, MSSM, in
perspective, and seen from above.

Problem 2.1: Is there a parallel robot synthesis method allowing one to
obtain automatically all possible architectures with a specified number of
degrees of freedom?
Problem 2.2: Being given the manufacturing tolerances of a parallel
robot with less than 6 d.o.f., and its workspace, determine the maximal
amplitude of the parasitic motion (i.e. the motion along unwanted d.o.f.)
over the workspace of the robot
Problem 2.3: For a parallel robot with less than 6 d.o.f. and a given
workspace, determine the maximal value of the manufacturing tolerances
such that the maximal amplitudes of the parasitic motion (i.e. the motions
along unwanted d.o.f.) over the workspace of the robot are lower than given
thresholds
Problem 2.4: Establish a list of n d.o.f. robots with decoupled rotation
and translation
Problem 2.5: Establish a list of n d.o.f. completely decoupled robots



CHAPTER 3

Inverse kinematics

This chapter will examine the relations between the actuated joint coordi-
nates of a parallel robot and the end-effector pose. The relation giving the
actuated joint coordinates for a given pose of the end-effector is called the
inverse kinematics, and we will show that usually this relation is simple for
parallel robots

3.1. Inverse kinematics

The inverse kinematics consists in establishing the value of the joint co-
ordinates corresponding to the end-effector configuration. Establishing the
inverse kinematics is essential for the position control of parallel robots.
There are multiple ways to represent the pose of a rigid body through
a set of parameters X. The most classical way is to use the coordinates
in a reference frame of a given point C of the body, and three angles to
represent its orientation (we have already seen the Euler angles that we
will use throughout this book, but other angles may be used as, see the
”Workspace” chapter). But there are other ways such as kinematic map-
ping which maps the displacement to a 6-dimensional hyperquadric, the
Study quadric, in a seventh-dimensional projective space. The kinematic
mapping may have an interest as equations involving displacement are al-
gebraic (and the structure of algebraic varieties is better understood than
other non-linear structures) and may have interesting properties, for exam-
ple, stating that a point submitted to a displacement has to lie on a given
sphere is easily written as a quadric equation using Study coordinates.

3.1.1. GENERAL METHODS

3.1.1.1 Analytic method
If we consider each of the chains linking the base to the moving platform,
A will represent the end of the chain that is linked to the base, and B the
end of the chain that is linked to the moving platform. By construction the
coordinates of A are known in a fixed reference frame, while the coordinates
of B may be determined from the moving platform position and orienta-
tion. Hence the vector AB is fundamental data for the inverse kinematic
problem, this is why it plays a crucial role in the solution.

95
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If X represents the generalized coordinates of the moving platform we
have

AB = AO + OB = H1(X) . (3.1)

This gives the positions of the extreme points of all the chains for which we
want to calculate the joint coordinates (which often simply means the actu-
ated joint coordinate). We therefore need to calculate the direct kinematics
of each single chain which, in general, involves only the moving platform
generalized coordinates and the given chain joint coordinates, but not those
of the other chains: the solution can therefore be done in parallel for each of
those chains. Such a parallel solution will be possible only if chains do not
share an actuated joint variable, as in the robot of Zoppi (669), figure 2.31.

The chain joint coordinates Θ allow us to determine the vector AB,
with, if needed, the help of X:

AB = H2(X,Θ) (3.2)

The joint coordinate calculation can thus be done by solving the following
system of equations:

H1(X) = H2(X,Θ) (3.3)

If we have p chains connecting the base and the end-effector, the number
of unknowns in (3.3) will be 3p (2p for planar robots). Alternatively, let
us assume that we have N joints, n of which are actuated, which implies
that we have also n unknowns in X. When the actuators are locked (i.e.
n unknowns in (3.3) have a fixed value) there remain N unknowns. As in
that case the mobility of the end-effector should be 0, there should be N
equations in (3.3).

In the most general case (for example for a 6-R serial chain), this solu-
tion could be complex. However, the chains used for parallel robots are in
general very simple and the solution does not cause any problems (only a
very strong impact on some performances may justify having a chain with
complicated direct kinematics, thus leading to a complex inverse kinematics
for the robot). The interest of this approach is that it can be fully auto-
mated: the equations may be derived from a kinematic description of the
chains and there are solution methods that are sufficiently general to deal
with most of the systems.

Note also that solving equation (3.3) will enable us to determine not
only the joint coordinates, but also the coordinates of the passive joints.

3.1.1.2 Geometrical method
A more geometrical approach to the inverse kinematics problem is to con-
sider that the extremities A,B of each leg have a known position in 3D
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space. Then we may cut the leg at a point M and get two different mech-
anisms MA,MB constituted of the chain between A,M and the chain be-
tween B,M . The free motion of the joints in these two chains will be such
that point M , considered as a member of MA, will lie on a variety VA, while
considered as a member of MB it will lie on a variety VB . If we assume that
the mechanisms have only classical lower pairs, these varieties will be alge-
braic with dimensions dA, dB . In the 3D space, a variety of dimension d is
defined through a set of 3-d independent equations, and hence VA, VB will
be defined by 3 − dA and 3 − dB equations. The solutions of the inverse
kinematic problem lie at the intersection of these varieties. As the number
of solutions must be finite (otherwise the robot cannot be controlled) the
rank of the intersection variety must be 0. In other words to determine
the 3 coordinates of the points that are common to VA, VB we need 3 in-
dependent equations that are obtained from the 3 − dA, 3 − dB equations
describing VA, VB . Hence we must have 3−dA +3−dB = 3, or dA +dB = 3.

Although we end up with a system solution problem, as in the previous
section this approach has some advantages:

− as the cutting point is free we have some freedom in the final system
of equations, and this may help the solution

− the varieties we consider describe geometrical objects whose intersec-
tion may already have been studied in geometry

− the intersection of algebraic varieties is a well studied topic, and various
methods allow us to determine bounds on the number of intersection
points without actually computing the intersection points (for example,
Bezout bounds).

Compared to the previous approach, the drawback of such an approach is
that the complexity of the system is heavily dependent upon the choice of
the cutting point; an automated treatment is difficult.

3.1.2. EXAMPLES

The following inverse kinematics calculations for a few robot architectures
having different types of chains will help explain the basic principles.

3.1.2.1 Planar manipulators
Figure 3.1 shows a planar manipulator with 3 degrees of freedom of the
3-RRR type. Being given the position of C and the rotation angle Φ, we
may calculate the rotation matrix R of the platform and the position of the
points Bi. We have

AB = AO + OC + RCBr = H1(X) , (3.4)
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Figure 3.1. The 3-RRR type planar robot

where CBr is the known coordinate vector of Bi in the moving frame. We
then write that Bi belongs to the serial chain AiMiBi with joint variables
θi, αi:

AB = AO + OMi(θi) + MiBi(αi) = H2(X,Θ) (3.5)

The inverse kinematics is obtained by solving the system H1(X) = H2(X,Θ)
i.e. 2 equations in the unknowns θi, αi.

In the geometrical approach, we choose Mi as a cutting point. The
mechanism AiMi imposes the constraint that Mi lies on a circle centered
at Ai with radius li1, while for mechanism BiMi, it must be on the circle
centered at Bi with radius li2. Hence the point Mi lies at the intersection of
two circles: there are therefore 2 solutions (or none). As this is valid for each
chain we get a total of at most 23 = 8 solutions for the inverse kinematics.

3.1.2.2 3-UPU manipulator
We consider a 3-UPU robot in its translational version (figure 2.10). The
inverse kinematics problem is to determine the length ρ of AB, being given
the generalized coordinates of the robot X which are the coordinates of C.
We may write

AB = AO + OC + CB = H1(X) (3.6)

For this robot the orientation is assumed to be constant, so that the vector
CB is identical to the vector CBr which express the coordinates of the B
point in the moving frame. Hence the components of AB are completely
determined.

Now we will consider B as the extreme point of a RRP chain. Let Υ
be the 2-vector constituted of the two rotation angles around the R joint,
and let ρ be the leg length. The unit vector n defining the direction of the
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leg may be calculated as a function of Υ and we have

AB = ρn = H2(Υ, ρ) (3.7)

Combining equations (3.6, 3.7), we get a system of 3 equations in the 3
unknowns ρ,Υ. To solve this system we may notice that the norm of AB
in equation (3.7) is ρ2, while we may calculate the norm value directly from
equation (3.6). Hence ρ2 can be calculated directly, and it is then easy to
determine Υ from the remaining equations.

Let us now investigate the geometric approach. We will choose B as the
cutting point. Point B has to lie on a sphere centered at A with radius ρ and,
seen from the platform, B is a fixed point. Hence to obtain the intersection
of these 2 varieties we will just state that the known distance between A,B
should be equal to ρ: this equation will give the joint coordinates ρ directly.

3.1.2.3 6-UPS manipulator
For this type of manipulator (figure 3.2) the problem is to determine the
length ρ of AB, being given the generalized coordinates of the robot X,
viz. the vector OC and a set of parameters that define the orientation of
the platform. Being given the orientation parameters, we can calculate the
rotation matrix R between the moving frame and the reference frame. We
may write

AB = AO + OC + RCBr = H1(X) , (3.8)

where the vectors AO,CBr are known respectively in the base reference
frame and in the moving platform frame. Hence the components of AB
are completely determined. As for the 3-UPU robot, B can be considered
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Figure 3.2. Fundamental vectors for establishing the inverse kinematics of a 6-UPS
robot.

as the extreme point of an RRP chain, and the unit vector n defining the
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direction of the leg may be calculated as a function of Υ = (α1, α2):

AB = ρn = H2(Υ, ρ) (3.9)

Combining equations (3.8, 3.9), we get a system of 3 equations in the 3
unknowns ρ, α1, α2. As for the 3-UPU , we notice that the norm of AB in
equation (3.9) is ρ2, and we may calculate the norm directly from equation
(3.8). Hence the joint coordinates ρi are therefore determined by

ρi = ||AiBi|| = ||AiO + OC + RCBir|| . (3.10)

The geometric approach is identical to that used for the 3-UPU .

Note

From equation (3.10), the squares of the lengths of the links may be
written as

ρ2 = ||AO||2 + ||CBr||2 + 2(AO + RCBr).OC + 2AO.RCBr + ||OC||2 .
(3.11)

It is notable that this expression contains terms linear in the C coordi-
nates and a quadratic part in those same terms (||OC||2). This last term
is the same whatever the considered link. If we calculate the difference be-
tween two squares of link lengths, this quadratic term will then disappear,
and only linear terms will remain. As a consequence, if we calculate this
difference for three pairs of links, we will obtain a linear system of three
equations in the three coordinates of C. We can then solve this system and
obtain the coordinates of C from the rotation matrix and the link lengths.

3.1.2.4 6-PUS manipulator
For this type of manipulator (figure 3.3) the problem is to determine the
length λ of AA0, being given the generalized coordinates of the robot X,
i.e. the coordinates of C and a set of parameters that define the orientation
of the platform. Equation (3.8) giving H1 remains valid. Being given the
2 rotation angles of the U joint, Υ = (α1, α2) and the length l of the link
A0B, we can calculate the vector A0B as A0B = ln where n is the unit
vector defining the axis of the link. We suppose that the prismatic joint axis
is defined by the unit vector u, and that the position of the linear actuator
at rest is A. Vector AB may be written as:

AB = AA0 + A0B = λu + ln = H2(λ,Υ) (3.12)

Equating (3.8) and (3.12) leads to a system of 3 equations in the 3 unknowns
λ, α1, α2.
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Figure 3.3. Parameters for the inverse kinematics of the 6-PUS manipulators.

To calculate the joint variable λ only we can compute the numerical
value of the square of the norm of AB based on equation (3.8). We can
also calculate the norm of AB based on equation (3.12) with

||AB||2 = λ2 + 2λ l u.n + l2 , (3.13)

We must therefore solve the quadratic equation (3.13) in order to cal-
culate the displacement corresponding to a certain configuration; this will
usually lead to two solutions. We will choose one of these two solutions,
generally the one compatible with the maximum actuator strokes.

In the geometrical approach we will choose A0 as cutting point. The
mechanism BA0 imposes that A0 lie on a sphere centered at B with radius
l, while the mechanism AA0 constrains A0 to lie on the line going through
A with unit vector u. Intersecting a sphere and a line leads to two possible
points. Hence the inverse kinematic admits generally 26 = 64 solutions. Let
us also note that the note 3.11 remains valid.

3.1.2.5 6-RUS manipulator
For this type of manipulator the joint center A0 rotates around a unit vector
axis u, and is located on a circle of radius r with center A (figure 3.4). The
inverse kinematic problem is to determine the angle β between the vector
AA0 and an arbitrary unit vector X1 that is perpendicular to u.

Being given the 2 rotation angles of the U joint, Υ = (α1, α2) and the
length ρ of the link A0B, we can calculate the vector A0B as A0B = ρn,
where n is the unit vector defining the axis of the link. Let us define Y1 =
u× X1. We can then write

AA0 = r(cos βX1 + sin βY1) . (3.14)
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Figure 3.4. The parameters for the inverse kinematics of RUS manipulators

and we get

AB = AA0 + A0B = r(cos βX1 + sinβY1) + ρn = H2(β,Υ) . (3.15)

Combining equations (3.8) and (3.15) leads to a system of 3 equations in
the 3 unknowns β, α1, α2. To get only the actuated joint β we use the norm
of A0B that can be calculated by

||A0B||2 = ρ2 = r2 + 2AB.A0A + ||AB||2 . (3.16)

where AB is known through equation (3.8). Defining γ = ρ2 − r2−||AB||2
and using the classical Weierstrass substitution, this equation may be writ-
ten in the form:

x2(γ − 2rX1.AB) + (4rY1.AB)x + 2rX1.AB + γ = 0 . (3.17)

which is an quadratic equation in the variable x = tan β
2 that will usually

lead to 2 solutions.
For the geometrical method we choose as cutting point A0. The mecha-

nism BA0 imposes that A0 lies on a sphere centered at B with radius ρ. For
the mechanism AA0, the point A0 is constrained to lie on a circle centered
at A with radius r lying in the plane perpendicular to u. The intersection
of these 2 varieties is 2 points.

3.1.2.6 General conclusion
As may be seen from the examples, solving the inverse kinematics problem
for parallel robots is usually simple, as long as the geometry of the legs
is simple enough, and allows for an analytic determination. However it
may happen that for complex legs such an analytic formulation cannot be
obtained (see exercise 3.11).
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3.1.3. EXTREMA OF THE JOINT COORDINATES

While designing a parallel robot, we may have to determine what maximum
and minimum values of the joint coordinates will be when the end-effector
has to lie within a given workspace. We will summarizes known results for
6-UPS robots for a given translation workspace, i.e. for which the orien-
tation of the end-effector is constant (this result may be extended to other
manipulators as well):
− the workspace is a box: when the point C moves within its box, the

joint B moves within a box S of the same size obtained by translating
the box described by C by the vector CB, which is constant since the
orientation is fixed. We define Ai

p as the projection of A on the plane
of face i of the box S and we consider only such points that belong to
face i of the box S. Let df be the smallest distance between the points
Ai

p and A, and let d be the smallest distance between the point A and
the corners of S. Then:

• the maximum length of a link is attained when the point B oc-
cupies a vertex of the box S

• the minimum length of a link is the smallest value between d
and df , unless A is included in the workspace, in which case the
distance is zero.

− the workspace is a sphere: when the point C moves within its sphere,
the joint B moves within a sphere S of the same radius, obtained
by translating the sphere described by C by the vector CB, which is
constant since the orientation is fixed. The line going through A and
the center of the sphere S intersects S at 2 points S1, S2 and we define
di as the distance between A and Si. The maximum leg length is the
maximum of d1, d2 and the minimal distance is either the minimum of
d1, d2, or zero if A is included in S

Similar results may be obtained for other geometrical shapes of translation
workspace. For the most general workspace, we have to solve a constrained
optimization problem for which interval analysis methods are appropriate
(see the interval appendix).

3.2. Exercises

Exercise 3.1: Show that the inverse kinematics of the RRP planar robots
has two solutions.
Exercise 3.2: Show that the inverse kinematics of RPP planar robots
has two solutions.
Exercise 3.3: Show that the inverse kinematics of PPR planar robots
has one solution.
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Exercise 3.4: Show that the inverse kinematics of PRP planar robots
has one solution.
Exercise 3.5: Determine the angle of rotation of the revolute joints close
to the base of a 3-UPU translational robot, being given the location of the
platform.
Exercise 3.6: Show that the inverse kinematics of a 6 degrees of freedom,
fully parallel robot with identical chains has a maximum of 64 solutions.
Exercise 3.7: Determine what is wrong in the following text (which has
been found in a journal paper!): the inverse problem is to determine the
length ρi of the actuated joint i.e. the distance between the points Ai, Bi.
Being given the pose of the platform, the coordinates of Bi are known,
while the coordinates of Ai are known geometrical parameters. Hence ρ2

i =
||AiBi||2 = U , from which we deduce that the inverse problem has two so-
lutions ρi = ±

√
U . However the negative length cannot be obtained without

a reassembling of the mechanism.
Exercise 3.8: Establish the values of the Euler angles of the universal
joint of the links of a 6-UPS robot, given the coordinates of its points A,B
in the reference frame.
Exercise 3.9: Establish the quadratic relation characterizing the solutions
of the inverse kinematics for spherical robots.
Exercise 3.10: Consider Reinholtz’s articulated robot, which consists
of two MSSM resting on top of each other, with the lower MSSM moving
platform being the base of the upper MSSM. The platform consists of three
links of various lengths, while the MSSM links are of fixed lengths (figure
2.57). Determine the number of solutions of its inverse kinematics.
Exercise 3.11: Han’s 6 degrees of freedom robot is described in figure 2.41.
Find the maximum number of solutions for the inverse kinematics of this
robot. You may need to use some results for planar mechanisms presented
in Chapter 4, section 4.1.
Problem 3.1: Determine the maximal number of solutions, and the solu-
tions, of the inverse kinematics of the manipulator proposed by Zoppi (669),
described in figure 2.31.



CHAPTER 4

Direct kinematics

This chapter will address the problem of determining the pose of the end-
effector of a parallel robot from its actuated joint coordinates. This relation
has a clear practical interest for the control of the pose of the manipulator,
but also for the velocity control of the end-effector.

Determining the pose of the end-effector from measurements of the mini-
mal set of joint coordinates that are necessary for control purposes, is equiv-
alent to solving the system of inverse kinematics equations. We will show
that, in general, the solution for this problem is not unique i.e. there are
several ways of assembling a parallel manipulator with given actuated joint
coordinates, and that generally we cannot express in an analytical manner
the generalized coordinates as functions of the actuated joint coordinates.
We will present methods for finding all the solutions for this problem. We
will see that their computation times, although decreasing, are still too
large for use in a real time context. Furthermore, there is no known algo-
rithm that allows the determination of the current pose of the platform
among the set of solutions. We will then present numerical methods using
a-priori information on the current pose, that are more compatible with a
real-time context, and emphasize that their convergence and robustness is
an important issue. Finally we will investigate the influence of additional
sensory information on the direct kinematics.

4.1. Planar robots

In this section we will consider 3 d.o.f. planar manipulators, as presented in
the ”Architecture” chapter. The inverse kinematics equations form a sys-
tem of three non-linear equations. We will first show that this system may
possess several solutions, i.e. that there are several poses of the end-effector
for given values of the joint coordinates. It is therefore possible to assemble
the manipulator in different ways, and these different configurations will be
called the assembly modes of the manipulator. In order to obtain the as-
sembly modes, we will manipulate the equations to reduce the problem to
finding the roots of a polynomial in one variable, a univariate polynomial.
When using this algebraic elimination approach for solving the direct kine-
matics it is first necessary to determine beforehand an upper bound for the
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number of assembly modes that will then be used to guide the elimination
to obtain a polynomial with the lowest possible degree. For finding this
upper bound we will first recall a few basic notions of mechanism theory
which we illustrate on a specific mechanism, the 4-bar mechanism.

4.1.1. THE 4-BAR MECHANISM

The 4-bar mechanism is described on figure 4.1: it uses only revolute joints,
fixed length links, and it has one degree of freedom.

OA

φ
ψ

OB

p

1

2
r

4

s

A

λ

b

a

coupler
C

γ

y

x

3
c

B

Figure 4.1. The 4-bar mechanism and some possible coupler curves.

This mechanism is made of 4 articulated bars 1, 2, 3, 4. A body, the
coupler, is rigidly linked to bar number 3. Its geometry is defined by the
lengths a, b and the angle γ. The mechanism is defined by the lengths p, r, s
of the bars 1, 2, 4 and by two angles: the angle φ between the bars 1 and
2, and the angle ψ between 1 and 4. If we change one of these angles, each
point of the coupler, C for instance, will describe a curve, called the coupler
curve. This curve is algebraic, as shown by Freudenstein (169).

4.1.2. COUPLER CURVE AND CIRCULARITY

The 4-bar mechanism has been extensively studied (248). We assume that
a motor rotates the segment number 2, and thus modifies the angle φ,
and we focus on the coupler curve described by point C, with coordinates
(X,Y ); the curve is a sextic1 S, some examples of which are illustrated in
figure 4.1. One interesting property of this sextic is that it is tricircular, i.e.
it possesses three double points on the imaginary circle, a concept we will
now describe. Let us recall some useful notions relating to the intersection

1A software allowing the visualization of coupler curves is available by anonymous
ftp, in the directory coprin/4bar
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of algebraic curves, see for example (248). According to Bezout’s theorem,
an algebraic curve of order n generally meets an algebraic curve of order
m in nm points. This result, which is quite well known, may seem like a
paradox if we apply it to circles: it would then lead to the existence of 4
intersection points. This paradox can be explained simply in the following
manner:
Let us consider a circle of radius r, with its center at coordinates (a, b):

(x − a)2 + (y − b)2 − r2 = 0 ;

that is written in projective space by introducing a new unknown w:

(
x

w
− a)2 + (

y

w
− b)2 − r2 = 0 .

The unknown w may be considered as a scale factor. The preceding equation
is said to be homogeneous since it can be written as:

(x − aw)2 + (y − bw)2 − r2w2 = 0 .

where all the terms are now of degree 2 with respect to the unknowns x, y, w.
The coordinate system x, y, w is called a homogeneous planar coordinate
system. In this coordinate system (x, y, w) and (λx, λy, λw) represent the
same point. It is easy to verify that the two points with coordinates (1,±i, 0)
lie on the circle: these two imaginary points are called the imaginary circular
points S1, S2. These points satisfy x2 + y2 = 0 which defines the imaginary
circle. Since the imaginary circular points do not depend on the terms
a, b, r, they belong to all the circles. The intersection of any two circles will
therefore always include the two imaginary circular points and, as a result,
two circles cannot intersect in more than two real points. If a planar curve
includes the points S1,S2 as double points, triple points,. . . we will say that
this curve has a circularity of 2, 3, . . .

The 4-bar sextic S is tricircular, which simply means that its circular-
ity is 3. Indeed, (see (248)) the sextic equation expressed in homogeneous
coordinates for w = 0 is

(x2 + y2)3(a2 + b2 − 2ab cos γ) = 0 . (4.1)

Except when one side of the quadrilateral OAABOB has zero length, so
that it reduces to a triangle, equation 4.1 is equivalent to (x2 + y2)3 = 0.
The sextic thus contains the points S1,S2 as triple points. Let us also note
that the circularity of the curve is maximal, since a sextic cannot have a
circularity greater than 3.

Note that the notion of circularity may be extended to the spatial case,
the equation x2 + y2 + z2 = 0 being the absolute conic.
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4.1.3. DIRECT KINEMATICS OF THE 3-RPR ROBOT

We consider the 3-RPR robot described in figure 4.2. In order to estimate

F (c3, d3)

C(c2, 0)
x

y

A(0, 0)

Φ

θ

B(x, y)

D

E

l1
l3

l2

ρ2

ρ1

ρ3

Figure 4.2. The 3-RPR robot

an upper bound for the number of assembly modes of this robot, we will
examine a sub-mechanism obtained from this robot by detaching one of the
joints of the moving platform from its link.

4.1.3.1 Assembly modes
If we consider the mechanism defined in figure 4.2 and disconnect the link
EF , the remainder of the mechanism becomes an articulated 4-bar mech-
anism.

The number of intersection points of the coupler curve with the circle
with center F and radius ||EF|| then gives us the number of possible loca-
tion of E, and hence the number of assembly modes. According to Bezout’s
theorem, the number of intersection points of a sextic with a circle is at
most 12. However, given the tricircularity of the sextic, the points S1,S2

will count in Bezout’s number as 6 imaginary intersection points. We can
therefore state that there are at most 6 possible assembly modes for this
type of parallel robot.

4.1.3.2 Polynomial direct kinematics
Among the methods that may be used to solve the inverse kinematics equa-
tions (see the solving appendix) we will use an elimination approach that
will allow us to reduce the initial problem of solving a system of 3 equations
to solving a univariate polynomial equation.

Various methods have been suggested, such as that of Kassner (304),
Pennock (469); we will follow C. Gosselin (192) with the notation of fig-
ure 4.2. The origin of the reference frame is chosen as the joint center A,
and its axis x is defined by the line that joins A to the joint center C. The
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axis y is then perpendicular to x. The pose of the moving platform is de-
fined by the position of the joint center B associated with the point A and
having coordinates (x, y). The orientation of the moving platform is deter-
mined by the angle Φ between the axis x and the edge BD of the moving
platform. The moving platform itself is made of the 3 points B,D,E, and
its geometry is uniquely defined by the length of its 3 edges (l1, l2, l3) and
by one of the vertex angles, e.g. the angle θ between the sides EB and BD.
The 3 link lengths are denoted ρ1, ρ2, ρ3. Based on these conventions, the
coordinates of the three joints that are linked to the reference frame are:

A : (0, 0) , C : (c2, 0) , F : (c3, d3) .

Under these conditions the inverse kinematics may be written as

ρ2
1 = x2 + y2 , (4.2)

ρ2
2 = (x + l2 cos Φ − c2)2 + (y + l2 sin Φ)2 , (4.3)

ρ2
3 = (x + l3 cos(Φ + θ)− c3)2 + (y + l3 sin(Φ + θ)− d3)2 , (4.4)

and can also be written in an algebraic form as

ρ2
1 = x2 + y2 , (4.5)

ρ2
2 = x2 + y2 + Rx + Sy + Q , (4.6)

ρ2
3 = x2 + y2 + Ux + V y + W . (4.7)

The equation system (4.5-4.7) may be written in a simpler manner:

ρ2
1 = x2 + y2 , (4.8)

ρ2
2 − ρ2

1 = Rx + Sy + Q , (4.9)
ρ2

3 − ρ2
1 = Ux + V y + W . (4.10)

The equations (4.9-4.10) are linear in x, y, and this system, with determi-
nant ∆ = RV − SU , has the solution

x = −(SA1 − V A2)/(RV − SU) , y = (RA1 − UA2)/(RV − SU) ,

where
A1 = ρ2

3 − ρ2
1 − W A2 = ρ2

2 − ρ2
1 − Q

provided ∆ �= 0. This result can then be transferred into equation (4.8) in
order to obtain the equation:

(SA1 − V A2)2 + (RA1 − UA2)2 − ρ2
1(RV − SU)2 = 0 , (4.11)



110 CHAPTER 4

which only depends on the variable Φ. The Weierstrass substitution is then
used:

T = tan(
Φ
2

) , cos(Φ) =
1 − T 2

1 + T 2
, sin(Φ) =

2T
1 + T 2

.

This substitution converts (4.11) to a sextic in T :

C0 + C1T + C2T
2 + C3T

3 + C4T
4 + C5T

5 + C6T
6 = 0 (4.12)

where the coefficients Ci depend only on the geometry of the manipulator2.
Each real solution of this equation gives a value of Φ, which in turn gives
a pair x, y. However, a sextic may have 0, 2, 4, or 6 real solutions. This
means that we do not know whether there exists even one assembly mode
for a set of joint coordinates. Since there is no closed form for the solution
of a sextic we must find the solution numerically; it is then easy to find an
example of a manipulator (figure 4.3) that has 6 assembly modes, i.e. the
sextic has 6 real roots. Figure 4.3 also shows the coupler curve; it intersects
the circle described by the end of the dissociated link at 6 points. Note a

Figure 4.3. On the left, the 6 assembly modes of a planar parallel robot with . The
dimensions are OA1(0, 0), OA2(15.91 , 0), OA3(0, 10), the link lengths: 14.98, 15.38, 12
and the sides lengths: B1B2: 17.04, B1B3: 20.84, B2B3: 16.54. On the right is its coupler
curve. This robot has 6 assembly modes: the circle described by the end of the dissociated
link (in thick line) intersects the coupler curve at 6 different points.

surprising point: it may be thought that by adding a fourth leg there will
be only one solution (we have now 4 equations for only 3 unknowns). This
is not the case, as shown by Husty in a private communication during the
conference ARK 2000: even with 4 legs there still may be up to 6 solutions
to the direct kinematics problem.

2A software package designed for solving the direct kinematics of a 3-RPR robot is
available by anonymous ftp, in the directory coprin/FK/3-RPR



DIRECT KINEMATICS 111

4.1.3.3 Particular cases
We consider the particular case of the planar parallel robot for which the
joints linked to the mobile as well as those linked to the fixed reference, are
collinear, as shown in figure 4.4.

A(0, 0) F (c3, 0) C(c2, 0)

D
E

B(x, y)

l3

l2

ρ1
ρ2

ρ3

x

y

Figure 4.4. A special case of planar parallel robots: it enables the control of the position
and the orientation of the bar BED when the lengths ρi are modified.

In this case, the same procedure that has been used in the general
inverse kinematics equations leads to a cubic equation in T = cos Φ:

f0(T ) = a3T
3 + a2T

2 + a1T + a0 = 0 . (4.13)

There are thus at most three values of T , and hence at most three pairs
±Φ, six values in all. Here the solutions of this equation can be determined
analytically. In fact, it is quite easy to show, for example by using Sturm’s
method, that this polynomial cannot have more than two real solutions in
the interval [−1, 1], and consequently that the manipulator has at most 4
assembly modes; see exercise 4.1. Other geometries, in which the degree of
the polynomial is lower than 6, have been studied in (194).

4.1.4. OTHER PLANAR ROBOTS

A complete study of the direct kinematics of planar robots was presented
in (404). This study showed, from the direct kinematics viewpoint, that
all possible chains are equivalent to the four generic chains presented in
figure 4.5 and denoted type 1, 2, 3, 4 (the latter can appear only once
among the robot’s three chains). The equivalences between the chains and
the generic chains are given in table 4.1.

If we have a solution method for all manipulators with these generic
chains, we will be able to analyze the direct kinematics for all planar
robots3. For these generic chain robots, it is relatively easy to find the

3This is a phenomenon that occurs frequently when studying parallel robots: very
often the direct kinematic analysis for two robots with different mechanical architecture
will be the same
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1 2 3

BB B

4

Figure 4.5. The 4 generic chains to which all the possible chains of planar parallel robots
are equivalent.

RRR RRR RRR RPR RPR RPR RPP RPP PRR

1 1 1 2 1 3 3 3 1

PRR PRR PRP PRP PPR PPR RRP RRP RRP

2 2 3 2 2 2 3 3 1

TABLE 4.1. Equivalences between chains.

maximal number of assembly modes, and to find a polynomial form for
the direct kinematics,the degree of which corresponds to that number. The
results are presented in table 4.24.

chain 1-1-1 2-2-2 3-3-3 1-1-2 1-1-3 2-2-1 2-2-3 3-3-1

solutions 6 2 2 6 6 4 4 4

chain 3-3-2 1-2-3 1-1-4 1-2-4 1-3-4 2-2-4 3-3-4 2-3-4

solutions 4 6 2 2 2 1 1 1

TABLE 4.2. Maximum numbers of solutions for generic chain robots.

4.2. Robots with 3 translational d.o.f.

For parallel robots in translation it is in general easy to solve the direct
kinematics. For example for the Delta robot (figure 2.6), calculation for
the direct kinematics can be done explicitly. Indeed let us denote by Mi

the lever end points: these points have a fixed location when the actuators
are locked. The structure of the legs allows the point Bi to move on a
sphere centered at Mi. As the orientation of the platform is constant when

4The introduction of type 4 is due to C. Wampler, who kindly provided us with the
results for this chain
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Bi moves on a sphere, then C, the center of the platform, also moves on a
sphere Si with same radius, and a center that is obtained by translating Mi

by the constant vector BiC. For a solution of the direct kinematics, point
C should lie on the 3 spheres Si and is thus obtained as the intersection
of these spheres. This leads to two solutions which are symmetrical with
respect to the plane defined by the three points corresponding to the lever
ends (it is often possible to eliminate one or two solutions for geometric
reasons, or because of mechanical limits on the joints). Note that the same
method may be applied to solve the direct kinematics of the 3−UPU .

4.3. Robots with 6 d.o.f.

The direct kinematics of 6 d.o.f. robots will usually be the most difficult
to solve, even though certain mechanisms admit an explicit solution. In
this section we will show how a geometrical analysis may lead to an upper
bound for the number of real solutions, and we will also present methods
that may be used to determine all the solutions.

We will also show that the direct kinematics of large classes of mecha-
nisms can be solved by the study of a few generic mechanisms, here called
equivalent mechanisms, for which an upper bound of the number of assem-
bly modes can be found and for which the direct kinematics can be reduced
to the solution of a univariate polynomial equation.

4.3.1. EXAMPLE OF ANALYSIS: THE TSSM

4.3.1.1 Upper bound on the number of assembly modes

For a TSSM with fixed length links, we consider the triangles formed by
the joint Bi and the corresponding joints Ai

1, A
i
2 on the base. For these

triangular faces, the only possible motion of Bi is a rotation around the
line A1

i A
2
i . Hence each point Bi must lie on a circle with center on this line.

Hence we may construct a 3-RS mechanism that is equivalent, from the
direct kinematics viewpoint, to the TSSM, and made of three links (called
the equivalent links) that all rotate around a revolute joint, and which all
have one end connected to the moving platform by an S joint (figure 4.6).
Hunt (250) showed that the maximal number of assembly modes for a
TSSM was 16. His method was the following: starting from the equivalent
mechanism of the TSSM, he disconnected one of the links from the moving
platform and considered the remaining part of the mechanism; this was a
four-bar spatial mechanism, called a RSSR, made of 4 links linked by two
revolute joints and by two ball-and-socket joints (figure 4.6). The point B
of this mechanism, with coordinates (X,Y,Z), lies on a surface. In order to
establish the degree of this surface, we use Cayley’s theorem (248) which
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B

G

H

Figure 4.6. On the left, the equivalent mechanism of the TSSM. On the right, the RSSR
mechanism obtained after cutting one of the links of the equivalent mechanism.

states that a line for which two fixed points C,D are constrained to move
on two algebraic curves of order nc, nd and of circularity pc, pd, will generate
a ruled surface of order 2nc(nd − pd) + 2nd(nc − pc) if the algebraic curves
do not lie on parallel planes, and of order 2nc(nd−pd)+2nd(nc−pc)−2pcpd

if they do lie on parallel planes.
For an RSSR, the hypotheses of Cayley’s theorem are satisfied for the

line going through the points G,H, which lie on circles. Hence we have
nc = nd = 2, pc = pd = 1, which leads to an 8th order surface (if the circles
were lying on parallel planes, the order would be 6). If we take into account
the rotation of the platform around GH, we find that B lies on a surface
of degree 16.

If we now consider the number of intersection points of this surface with
the circle described by the end of the equivalent link we have disconnected,
we obtain the number of possible assembly modes for the mechanism; the
corresponding results when the circles lie within parallel planes are shown
in brackets. A surface of order 16 (12) meets a circle in a maximum of
32 (24) points. However, among these points, some will be situated on the
imaginary sphere: they must therefore be subtracted from the number of 32
(24). Thus, everything depends on the circularity of a surface of order 16
(12). Hunt suggested that this circularity might be 8 (6), and this was later
proved. It is hence possible to assert that 16 (12) points are imaginary, and
that there are at most 16 (12) assembly modes.

4.3.1.2 Polynomial formulation
We will reduce the solution of the direct kinematics to the solution of
one univariate polynomial equation. It is worth noting that this study was
started by Nanua and Waldron (442)∗, who determined a 24th order poly-
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nomial for the MSSM. We have established in the previous section that
there are a maximum of 16 assembly modes for the TSSM. Our goal is
therefore to obtain an equation with degree equal to this number.

Numerous researchers have worked on this problem. A 16th order poly-
nomial was found as early as 1988 by Charentus and Renaud (87) from
LAAS; using their method we were able numerically to find several con-
figurations with 16 solutions (399). Another solution method, which uses
the notion of a spherical mechanism, was also suggested by Griffis and
Duffy (206). Finally, Nanua also mentioned a correct solution (442)∗.

The method developed by Innocenti (263) will be used to establish this
polynomial. We will establish the RSSR polynomial for general positions
of the revolute joint axes, notwithstanding the fact that for the TSSM these
axes are coplanar, using the notation defined in figure 4.7. The mechanism
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l13

l15

l35
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v5
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Figure 4.7. Notations used for the polynomial formulation of a RSSR

is defined by three links Q1P1, Q3P3, Q5P5 with lengths ρ1, ρ3, ρ5, that are
able to rotate around the points Q1, Q3, Q5. The angles p12, p34, p56 define
the rotations. The reference frame is designed so that O lies in the plane
Q1Q3Q5. The lengths of the edges of the moving triangle are l13, l15, l35.

The initial system of equations is defined by the 3 following equations:

||P1P3|| − l13 = 0 , ||P1P5|| − l15 = 0 , ||P3P5|| − l35 = 0 . (4.14)

All these equations can be expressed in terms of the 3 unknowns p12, p34, p56

and they may be written as

q1 cos(p12) cos(p34) + q2 cos(p12) sin(p34) + q3 sin(p12) cos(p34) + q5 cos(p12)
+q4 sin(p12) sin(p34) + q6 sin(p12) + q7 cos(p34) + q8 sin(p34) + q9 = 0,(4.15)
r1 cos(p12) cos(p56) + r2 cos(p12) sin(p56) + r3 sin(p12) cos(p56) + r5 cos(p12)
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+r4 sin(p12) sin(p56) + r6 sin(p12) + r7 cos(p56) + r8 sin(p56) + r9 = 0,(4.16)
s1 cos(p34) cos(p56) + s2 cos(p34) sin(p56) + s3 sin(p34) cos(p56) + s5 cos(p34)
+s4 sin(p34) sin(p56) + s6 sin(p34) + s7 cos(p56) + s8 sin(p56) + s9 = 0.(4.17)

where the coefficients qi, ri, si do not depend on the unknowns (p12, p34, p56).
We introduce the variables t12, t34, t56:

t12 = tan(
p12

2
) , t34 = tan(

p34

2
) , t56 = tan(

p56

2
) .

Equations (4.16), (4.17) are written as

At256 + Bt56 + C = 0 , (4.18)
Rt256 + St56 + T = 0 , (4.19)

in which the coefficients A,B,C are second degree polynomials in t12, and
the coefficients R,S, T are second degree polynomials in t34:

A = A2t
2
12 + A1t12 + A0 , B = B2t

2
12 + B1t12 + B0 , (4.20)

C = C2t
2
12 + C1t12 + C0 , R = R2t

2
34 + R1t34 + R0 , (4.21)

S = S2t
2
34 + S1t34 + S0 , T = T2t

2
34 + T1t34 + T0 . (4.22)

We eliminate the unknown t56 by calculating the resultant d of the equations
(4.18,4.19) (see the solving appendix):

d =

∣∣∣∣∣∣∣∣
0 A B C
A B C 0
0 R S T
R S T 0

∣∣∣∣∣∣∣∣
= 0 .

Expanding d we get

Gt434 + Mt334 + Nt234 + Ut34 + V = 0 , (4.23)

where G,M,N,U, V are 4th order polynomials in t12. Equation (4.15) also
is an equation in t34 which may be written as

Dt234 + Et34 + F = 0 , (4.24)

where D,E,F are 2nd order polynomials in t12. Equations (4.23), (4.24)
therefore are polynomial equations in t34. This unknown is eliminated by
writing the resultant d1 of equations (4.23,4.24):

d1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 G M N U V
G M N U V 0
0 0 0 D E F
0 0 D E F 0
0 D E F 0 0
D E F 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 .
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d1 then is a polynomial5 in t12, of order 16. In the particular case of the
TSSM d1 only contains even powers of t12: it is a polynomial of degree
8 in t212; this means that if the basic equations admit the triplet solution
(p12, p34, p56), they then also admit the opposite triplet (−p12,−p34,−p56)
as a solution; each solution configuration has a corresponding mirror con-
figuration with respect to the base.

We can see that the fact that the direct kinematics may have up to 16
solutions is confirmed by the degree of the resulting polynomial. However, at
this stage we do not know whether there is a manipulator with 16 assembly
modes for a given set of joint coordinates. The polynomial may only be
solved numerically: we present an example in the next section.

4.3.1.3 Example of TSSM with 16 assembly modes
Consider a manipulator which joint coordinates given in table 4.3.

link xa ya za xb yb zb

1 -9.7 9.1 0.0 0.0 7.3 0.0

2 9.7 9.1 0.0 0.0 7.3 0.0

3 12.76 3.9 0.0 4.822 -5.480722 0.0

4 3.0 -13.0 0.0 4.822 -5.480722 0.0

5 -3.0 -13.0 0.0 -4.822 -5.480722 0.0

6 -12.76 3.9 0.0 -4.822 -5.480722 0.0

TABLE 4.3. Position of the A, B points for the TSSM
with 16 assembly modes.

Choosing an arbitrary set of joint variables will usually lead to 0 solution
for the direct kinematics. Hence to ensure that there is at least one solution
we choose a nominal configuration from which we calculate the link lengths.
The chosen nominal configuration is xc = yc = 0, zc = 20, ψ = −10◦, θ =
−5◦, φ = 10◦. Numerical solution for this set of link lengths shows that
the robot admits 16 assembly modes (and the solutions may be certified
with interval analysis, see the interval appendix). Table 4.4 presents the
pose parameters of the 8 configurations with the moving platform situated
above the base; the other 8 configurations are mirror images of these. The
first 8 configurations are shown in figure 4.8. Some authors have stated

5An implementation of this algorithm is available by anonymous ftp, in the directory
coprin/FK/6p-3.
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xc yc zc ψ θ φ

0.1099 -6.8071 15.1572 178.790092 104.247298 -179.3975

0.0 0.0 20.0 170.0000 4.999992 -170.0000

2.8029 -4.6660 12.7406 55.389531 89.178208 136.1996

1.3617 4.9038 17.3824 -106.331771 149.931849 58.9676

0.1606 5.3765 17.1868 -170.380852 164.013963 7.9545

-0.3524 -3.8663 11.9183 -12.559631 45.110726 -168.3013

-1.4134 4.8262 17.4299 102.640488 147.384474 -61.9768

-2.3355 -4.4679 12.5478 -50.849043 79.039617 -137.3532

TABLE 4.4. 8 assembly modes with the moving platform over the base.

Figure 4.8. 8 assembly modes with the moving platform over the base (for each solution
we present a perspective view, a top view and a side view).

that solving the direct kinematics with the polynomial formulation may
lead to numerical errors: we have never experienced such a problem, but
we agree that the computation must be implemented carefully.

It is interesting to know how the solutions are distributed within the
workspace. A systematic study allowed us to establish this distribution,
as shown in the table 4.5. This result has been established by solving the
direct kinematics for 297381 points within the workspace defined by ±8 cm
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for the coordinates x, y, 19 and 21 cm for the coordinate z, ±15◦ for the
rotational angles, using a step size of 1 cm for the coordinates x, y, z and 5◦
for the angles. The configurations with the minimum, 2, or maximum, 16,
numbers of assembly modes constitute only a small of the whole (2.5%);
92.38% of the whole have 4-12 configurations.

solutions 2 4 6 8 10 12 14 16

number 2060 77446 31309 134443 11764 31524 3255 5580

in % 0.69 26.04 10.53 45.21 3.96 10.60 1.09 1.88

TABLE 4.5. Distribution of the number of solutions of the direct kinematics of the
TSSM over its workspace

This analysis of the TSSM allows us to note the astonishing duality
between parallel and serial robots: the inverse kinematics of a serial 6R
robot also leads to a 16th order polynomial. Murthy (436) actually stud-
ied a particular 6R robot and showed that a parallel equivalent could be
found, and that it is a TSSM. Bruyninckx (62), Collins (106), Duffy (144),
Waldron (600)∗ and Zamanov (646)∗ all tried to explain this duality. The
duality is complete for the velocity and static aspects, but it remains diffi-
cult to establish it for the kinematics.

4.3.2. ANALYSIS OF OTHER SPACE MECHANISMS

The TSSM has shown us how the notion of equivalent mechanism allows
us to treat the problem of the direct kinematics, by reducing the system
of non-linear equations to a univariate polynomial. Although the equiva-
lent mechanism of the TSSM has a particular characteristic (the revolute
joint axes are coplanar) the method used to obtain the polynomial did not
depend on this characteristic.

The notion of equivalent mechanism6 allows us to obtain a polynomial
formulation of the direct kinematics for many important spatial mechanisms
suggested in current literature on the subject. We will see, however, that
this notion is not always applicable.

6A generic implementation for the resolution of the direct kinematics of robots with
equivalent mechanisms of the 3−RS type is available by anonymous ftp, in the directory
coprin/FK/3RS
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4.3.2.1 3 degrees of freedom wrist
The notion of equivalent mechanism may be used for a large number of
mechanisms and not only for a 6 d.o.f. robot. We consider in this section a
wrist with a 3 degrees of rotary freedom (figure 4.9). The locations of the
joints Ai are fixed, and hence the corresponding joints Bi on the moving
platform can describe a circle, with center Ci situated on the line going
through the ball-and-socket joint C and the point Ai. Using the joint co-
ordinates and the manipulator geometry, we may determine the centers Ci

and radii ri of the circles.

B1

A1

C

C1

r1

A2

Figure 4.9. The wrist with three degrees of rotary freedom. When the heights of the
points Ai are fixed, the points Bi move on circles with centers Ci and radii ri. The center
of the circle is situated on the lines joining Ai to the ball-and-socket C.

The equivalent mechanism is therefore a 3-RS with revolute joint axes
having a common point. An upper bound of the number of possible assem-
bly modes is 16, and we can find a 16th order polynomial for the direct
kinematics. However, it is possible to go even further: we notice that at
the level of the 3-RS mechanism, for a set of solution angles, the angles
corresponding to the symmetrical pose with respect to the ball-and-socket
center will also provide a solution. This solution is unacceptable because it
does not satisfy the linking constraint with the ball-and-socket joint. Con-
sequently, there can be no more than 8 solutions. This shows that there is
a limit to the use of the notion of equivalent mechanism; it may provide
a polynomial with a degree which is too high. In fact, in this particular
case, as we will see in section 4.3.3.2, the direct application of a result of
Innocenti (264) shows that we can obtain an 8th order polynomial directly,
as Innocenti (268) has noted, and it is not difficult to find examples with
8 certified real solutions. In our test, we compute the number of solutions,
taking as input the joint variables calculated for a regular sampling of the
possible end-effector poses and we found out that we get 8 solutions for
about 2% of the cases.
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4.3.2.2 MSSM
The MSSM is a special case of the TSSM, but we will describe here another
solution approach proposed by Dedieu (131). He uses the Lagrange identity
that relates the squares of the distances of p points Mi in space. If Lij =
d(Mi,Mj)2 represents the square of the distance between the points Mi

and Mj, we have: ∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 0 L12 . . . L1p

1 L21 0 . . . L2p
...

...
...

...
...

1 Lp1 Lp2 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Dedieu considers five of the vertices of the MSSM and uses this identity to
build 6 polynomial equations. A clever manipulation of these polynomials
shows that there is a maximum of 16 solutions and that, in all cases, there
are either 0 or 2 convex solutions, the other being concave; this is a direct
exemplification of one of Cauchy theorems (75).

4.3.2.3 6−PUS robot and Stewart platform
The use of the equivalent mechanism can be illustrated on the 6−PS ac-
tive wrist (figure 2.34). The vertex on the moving platform of the triangle,
made of two links sharing the same double S joint, can rotate only around
an axis going through the U joints. We can therefore replace the two links
by a single link connected to the base by a revolute joint. We then obtain an
equivalent mechanism similar to that obtained for the TSSM, although the
revolute joints axes are now in a general position. Using the result of the
previous section, we may state that there are at most 16 assembly modes,
and that it is possible to find a 16 degree polynomial for the direct kine-
matics. This calculation was implemented, and we found configurations in
which 16 certified assembly modes were indeed possible. A numerical study
over the workspace of our prototype has shown that the direct kinematics
will have 8, 10 or 12 solutions in 85% of the cases.

The notion of equivalent mechanism may also be applied to the Stewart
platform. When the linear actuators have fixed lengths, the only possible
motion for the joint center is a rotation around a vertical axis. Given the
lengths of the actuators, it is easy to find the position of the centers of
the circles on which the joints lie, as well as their radii. An equivalent
mechanism is therefore a 3-RS with revolute joint axes vertical, i.e. the
circles lie within parallel planes. We apply the particular case of Cayley’s
theorem: an upper bound of the number of possible assembly modes is 12.

Lazard (347) showed that this result can be refined. He shows that
the solutions of the direct kinematics may be obtained directly from the
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solutions of the direct kinematics of two planar 3-RPR parallel robot7

i.e. by solving numerically a polynomial of degree 6. He also exhibits a
constructive proof for getting configurations with 12 real solutions.

4.3.2.4 Manipulators PPP -3S,PRR-3S,PPR-3S
The analysis of the RRR-3S mechanism by Parenti and Innocenti (263) was
used later for other mechanisms. Parenti (459) thus suggests an analysis of
the mechanism PPP -3S (figure 4.10). For this mechanism, three parame-

B1

B2

B3

λ1

λ3

λ2

B1
B2

B3

λ2

θ3θ1

B1

B2

B3

λ1 λ2

θ3

Figure 4.10. The robots PPP -3S,PRR-3S,PPR-3S.

ters, λ1, λ2, λ3 define the P joint displacements. The distance between two
joints Bi, Bj may be written as a quadratic form in the two parameters
λi, λj . We therefore have three equations describing the direct kinematics.
Considering the resultant of these equations, Parenti obtains an 8th order
polynomial. This mechanism therefore has 8 possible assembly modes, and
Parenti presents an example with 4 assembly modes. Note that this result
is coherent with the upper bound of the number of solution that can be
found by using Cayley’s theorem. Indeed according to this theorem point,
B1, which belongs to the coupler of the PSSP mechanism A2B2B3A3, lies
on a 8th order surface. The number of intersection points of this curve and
the line originating from A1 is at most 8.

Parenti (460) then continues by considering the PRR-3S and PPR-3S
mechanisms (figure 4.10). For these mechanisms, calculation of the dis-
tance between the joint centers on the platform brings about chains of the
PSSR,RSSR,PSSP,RSSP type, for which Parenti establishes the dis-
tance as a function of the parameters of the actuated joints. Manipulations
on these distance equations then gives a 16th order univariate polynomial
for the PRR-3S, and a 12th order one for the PPR-3S. However, the
examples suggested by Parenti for these two mechanisms have only four as-
sembly modes. Both results are consistent with the geometrical approach:
they correspond to the maximum number of intersection points of the line

7A software for Stewart platform direct kinematics is available by anonymous ftp, in
the directory coprin/FK/Stewart
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originating from A2 and the surface of the coupler curve of degree 12 for
the PSSR and of degree 16 for the RSSR.

4.3.3. SPECIAL CASES OF THE 6−UPS ROBOT

The notion of TSSM equivalent mechanism is unfortunately unable to deal
with the case of the general 6−UPS robot. Clearly this is one of the most in-
teresting cases, as this type of manipulator is the one the most encountered
in practice, and because the 6−UPS robot will be the equivalent mecha-
nism for a large number of other mechanical architectures (for example for
the Hexa, figure 2.38, or the Hexaglide, figure 2.35).

We will first start by generalizing the TSSM, known also as the 3-3
robot by reference to the number of attachment points on the platform
and on the base, by presenting results for m−n robots where m is the
number of attachment points on the base and n on the platform. These
results, together with the systematic analysis of Faugère and Lazard (161)
are summarized in tables 4.6,4.7.

4.3.3.1 6-5 manipulators
For this robot, presented in figure 4.11, the elimination result proposed by
Faugère is a 40th order polynomial. If both the platform and the base are
planar, Yin presented an example with 10 assembly modes (637).

base

Q

B5

B6B4

A4

A6

1 2

3

Figure 4.11. On the left, Yin’s 6-5 parallel robot: the direct kinematics is established
as a 40th order univariate polynomial. In the middle, Innocenti’s 6-4 parallel robot: the
direct kinematics is reduced to an 8th order polynomial, although with a maximum of
16 assembly modes. On the right, Hunt’s 6-4 parallel robot: according to Faugère and
Innocenti, this robot has a maximum of 32 assembly modes.

4.3.3.2 6-4 manipulators
The 6-4 manipulator presented in figure 4.11 was studied by Innocenti (264).
He first shows that the position of Q may be determined with the help of
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the lengths of the links 1, 2, 3, and that there are two solutions. These
three links therefore control the location of Q, while the other three are
used to control the orientation around this point, and the robot is par-
tially decoupled. Innocenti then establishes that for a given location of Q
the orientation of the platform may be obtained by solving an 8th order
univariate polynomial; Husain (254) presents an example with 16 real solu-
tions. This analysis allows us also to solve the direct kinematics of spherical
wrist (figure 4.9) and of spherical robots, see for example (195)∗.

Hunt (251) considered the 6-4 robot described in figure 4.11 and claimed
a maximum of 24 assembly modes, while Yin apparently established a 24th
order polynomial for the general case (637). But Faugère (161) shows that
the correct result was 32; this was confirmed by Innocenti (273).

4.3.3.3 6-3 manipulators
Nanua (442)∗, Hunt (251) and Geng (182) established that the 6-3 robot
shown in figure 4.12, a particular case of Innocenti’s 6-4 robot, still has a
maximum of 8 solutions.

4.3.3.4 5-5 manipulators
Innocenti (270) managed to obtain a 40th order polynomial for this mech-
anism (figure 4.12) and later on suggested, in a personal communication,
an example with 24 real solutions. For one of the particular cases of the 5-5
robot, shown in figure 4.12, Hunt (251) has shown that there are at most
24 assembly modes.

Q

B5

B4

A4

A6

1 2

3

Figure 4.12. On the left, the 6-3 parallel robot with at most 8 assembly modes. In
the middle, Innocenti’s 5-5 robot: the direct kinematics can be written as a 40 degree
polynomial. On the right, Hunt 5-5 robot; this robot has at most 24 assembly modes.

4.3.3.5 5-4 manipulators
The joints may be grouped in a way that leads to different types of 5-
4 parallel robots. The direct kinematics of the robot in figure 4.13 was
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Figure 4.13. On the left, Innocenti’s 5-4 parallel robot: the direct kinematics is estab-
lished as a 16 degree polynomial. On the right, Innocenti and Yin’s 5-4 parallel robot:
the direct kinematics is established as a 24 degree polynomial.

studied by Innocenti (265), who shows that we can refer to the study done
for the TSSM: we then obtain a 16 degree polynomial, and Innocenti gives
an example with 8 solutions. As for the 5-4 robot described in figure 4.13,
Innocenti (269) has established a 24 degree polynomial, and presented an
example with 8 real solutions. Lin (367) presents a complete analysis for 5-4
robots with base and platform planar. All the various cases are illustrated
in figure 4.14.

a b c d

Figure 4.14. The 5-4 parallel robots studied by Lin, seen from above. The upper bounds
of the number of solutions are: a) 16, b) 24, c) 16, d) 32.

The a) type is equivalent to that of Innocenti, and Lin also finds a 16th
order polynomial. The b) and d) types lead to the same type of analysis,
and Lin obtains a 32th order polynomial. Without being too strict in his
demonstration, Lin suggests a 24th order polynomial for the b) type which
is confirmed by Faugère in the general case. For the d) type, the polynomial
has degree 32 while Innocenti (272) analyzes the general case: the polyno-
mial still has degree 32 and Innocenti provides an example with 8 solutions.
For the c) type, Lin (366) does an analysis that is similar to that of the
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4-4 robot, which has a maximum of 16 solutions, while Faugère suggests a
maximum of 24 solutions in the general case.

4.3.3.6 4-4 manipulators
The 4-4 manipulator has four joints on the base and four on the moving
platform. Lin (366) studied this case thoroughly. With 4 joints, the faces of
the manipulator are of the quadrilateral type (Q) or triangular type (T ),
and there will be two faces of the Q type and four of the T type. Lin dis-
tinguishes several cases, according to the order in the faces: type I for the
TTQTTQ order, type II when the order is TTTQTQ, type III when the
order is TTTTQQ (figure 4.15). Lin shows that type I is equivalent to a

T
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Figure 4.15. The different types of 4-4 robots studied by Lin, seen from above. On the
right, the 4-4 robot studied by Innocenti with up to 16 assembly modes.

MSSM with a 16 degree direct kinematics. For the type II, a slightly more
complex analysis gives a polynomial formulation of degree 4 but with 16
as the maximum number of solutions, as each of the polynomial solution
leads to four solutions overall. As for the type III, Lin obtains a 12th order
polynomial leading to a maximum of 24 solutions; he presents an example
with 12 real solutions. Lin studies only the case when the joints are copla-
nar, however Hunt (251) showed that the maximum number of assembly
modes remained the same even if this constraint were lifted.

Another type of 4-4 robot was studied by Innocenti (267) (figure 4.15).
Presenting an 18th order polynomial form, he shows that this manipulator
may have up to 16 solutions; he gives an example with 16 real solutions.
For the 4-4 robot in which 3 links have a common joint on the base, we
have already determined that with 3 common joints on the platform the
maximum number of solution was 8, and this result holds if 3 links have
also a common joint on the base (61).
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4.3.3.7 Manipulators with 5 aligned points
Zhang (656) considers the 6−UPS manipulators in which 5 of the joints,
either on the base, or on the moving platform, are aligned (figure 4.16).
In this particular case Zhang shows that it is possible to find an explicit

Figure 4.16. 6 degrees of freedom spatial mechanism as suggested by Zhang. Here 5
joints are aligned either on the base, or on the moving platform. A symbolic formulation
for the direct kinematics solutions may be found.

formulation for the direct kinematics solutions. We can indeed manipulate
the direct kinematics equations to transform the problem into the resolution
of a 4th order polynomial, thus obtaining an analytical form for all the
solutions; generally there are 16.

4.3.4. THE SSM

The methods presented in the previous sections do not apply to the 6−UPS
robot with 6 degrees of freedom, nor do they apply to the SSM (planar base
and moving platform).

In that case Lazard (345) very smartly established that the maximum
number of solutions was 40. He shows that the problem is the same as
solving a system of 9 equations (3 linear, 6 quadratic) in 9 unknowns. Given
the degree of the equations, Bezout’s theorem shows that there can be no
more than 64 solutions. Using one of Bezout’s theorem and the concept
of Gröbner basis, he demonstrates that there are 24 solutions at infinity,
and thus at most 64-24=40 real solutions. However Rouillier, in a private
communication, mentions a proof that the number of real solutions cannot
exceed 36, as was confirmed by Husty (259). As for the calculation of these
solutions, we refer to the next section. Note that special cases of SSM have
been considered in the literature. For example Mavroidis (390) examines
the case where the base and platform are identical, and shows that there
will be at most 24 solutions to the direct kinematics. As similar result has
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been obtained by Yang (635) for congruent platforms (the platforms are
similar up to a scale factor).

4.3.5. GENERAL CASE OF THE 6−UPS ROBOT

4.3.5.1 Maximum number of assembly modes
Determining the maximum number of assembly modes and the solution
poses for 6−UPS parallel robots has been one of the greatest challenges
in the field of mechanism theory for the last few years. The exact result
is that the maximum number of solutions, whether complex or real, is 40
and was first established by Ronga (511), via a very complex proof, and by
Ragahvan (492) using an homotopy method (see the solving appendix).

This result was later demonstrated by Lazard (346), using Gröbner
bases; by Mourrain (431), and by Wampler (602), using a parametrization
based on dual quaternions and various mathematical tools. We should also
mention the approach of Sarkissyan (519), who attempted to design a robot
with the largest possible number of solutions; he used Burmester theory
for the coupler curves of 5-SS mechanisms. Another interesting point is
that adding a seventh leg may not decrease the number of solutions. For
example Husty (260) shows that for symmetrical robots having planar base
and platform it is possible to find A7, B7 points lying on the base and
platform planes, such that the length A7B7 will remain the same for the
solutions of the direct kinematics obtained for the initial 6-legged robot.
Those points are obtained when the A7 anchor points coordinates satisfy
a cubic constraint equation, a unique B7 point being associated to each
A7 point satisfying the constraint. This feature is related to permanent
singular robots, a topic that will be addressed in section 6.8.

4.3.5.2 Determination of the solutions
The challenge of finding all the solutions of the direct kinematics problem
has attracted a lot of attention. The methods that can be used to solve
this problem are intuitively presented in the solving appendix, and may be
summarized as follows:

− elimination: this method requires algebraic equations for the inverse
kinematics, may be fast, but has two main drawbacks: it is not easy to
get a final polynomial that has the minimal degree (40 in our case), and
the calculation of its coefficients is very sensitive to numerical errors
(hence this method does not provide certified solutions)

− homotopy: in practice this method requires algebraic equations for the
inverse kinematics, may provide certified solutions, but is usually slow
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− Gröbner basis: this method requires algebraic equations for the inverse
kinematics, and provides certified solutions if the coefficients of the
inverse kinematics equations are rational numbers

− interval analysis: this method may be used even if the inverse kinemat-
ics equations are not algebraic, and provides certified solutions. The
unknowns must be bounded (this is usually the case for kinematics
problems) and the computation time is difficult to estimate

− ad-hoc methods: the direct kinematics problem is transformed into an-
other simpler problem that is solved with one of the above method or by
an optimization procedure. For example Parenti and Innocenti (266)
use the solution for a 5-5 robot mentioned in section 4.3.3.4 to reduce
the problem to finding the zeroes of a univariate function. These meth-
ods may be fast, but are devoted to a specific architecture, and cannot
easily be extended to deal with other problems.

After numerous unsuccessful attempts throughout the world for estab-
lishing an univariate polynomial formulation, of degree 40, this remarkable
result was finally obtained in 1994 by M. Husty (256). Like Wampler (602),
who actually also developed a similar method, Husty uses a method based
on dual quaternions. After numerous manipulations of the equations, he
successfully proceeds to an elimination that leads to a degree 40 polyno-
mial. Unfortunately, these manipulations requires some intuition, and it is
not known if the method can be automated.

Currently the fastest exact solution methods are the Gröbner package
developed by Rouillier and Faugère (514), and an interval analysis based
method (417). They are able to calculate all the solutions in a computation
time that ranges from a few seconds to a minute.

4.3.5.3 Example with 40 real solutions
The determination of an example with 40 real solutions has caused quite
a few problems, which is understandable for various reasons. Consider a
rigid body that occupies a certain number of different poses, and wonder
how many points on this rigid body may be situated, in all the poses, on
fixed spheres, one for each point8. Roth (513) shows that for 7 different
poses, there can be a maximum of 20 such points. For our present problem,
this means that for 7 poses of the platform, we can find on it up to 20
points remaining on spheres for all poses. We need only 6 of them though,
since in our problem only the B points remain on spheres. However, Roth
demonstrates further on in his paper that in general, for 8 different poses
of the rigid body, there are no more points of the rigid body that are on
spheres for the 8 poses. . . In our case, though, we are looking for 6 points

8This is in fact one of the topics of the Prix Vaillant suggested by the Académie des
Sciences, and for which Borel (52) and Bricard (57) offered partial solutions
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that are on spheres for 40 poses. We may have therefore assumed that this
case, if it does exist, is extremely special. The first proof of the existence
of a robot with 40 real assembly modes was given by Dietmaier (132). His
proof is constructive as he produces examples with 40 solutions. Basically
the principle is to start with a robot geometry for which all the solutions are
computed (for example by using Husty’s algorithm). Some of these solutions
are real, while the others are complex. Dietmaier then cleverly perturbs
the locations of the joints so that the real solutions remain real while the
imaginary part of one of the complex solutions decreases; the solutions of
the perturbed system are obtained by using an iterative method. After a
few iterations this imaginary part vanishes to give a double real solution;
after a few more iterations, this double solution splits into two separate
real solutions. The process is repeated for each complex solution until all
the solutions are real.

4.3.6. SUMMARY OF RESULTS

Tables 4.6, 4.7 summarize the results known for the direct kinematics of
different manipulators. The notation used for the designation of the archi-
tecture is the following: the first two figures indicate respectively the num-
ber of joints on the base and on the moving platform, then a pictogram
shows the type of connection, with an exponent indicating the number of
times the pattern is reproduced. The letter (P) indicates coplanar points,
while the letter (Q) shows that some points are on a quadrilateral.

4.4. Systematic method for UPS robots

Although fast solution methods are available, it may be interesting to inves-
tigate ad-hoc methods that may be faster for specific cases. Nair (440) has
proposed a systematic approach to deal with special cases of UPS robots.
He shows that the inverse kinematics equations may be separated into a
set of linear equations, which relate two sets of variables through a matrix
A, and a set of non-linear constraint equations. The linear equations are
solved and the solutions are transferred to an appropriate subset of the
constraints equations. We then obtain a number, hopefully small, of poly-
nomial equations, which are combined to obtain a univariate polynomial.

Nair considers various examples, for instance a 3−UPS wrist with a
constraint mast, and establish correctly that the direct kinematics may be
solved by finding the roots of a 8th order polynomial in one variable.

For 6−UPS robots with a planar base and platform Nair establishes
interesting results.
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Robot Section Assembly modes degree Real solutions

3-3 {X(w)} (∆,Star) 4.2 2 explicit 2

Stewart 4.3.2.3 12 2 × 6 12

6-6 (|6) 4.3.5 40 40 40 (132)

6-6 SSM 4.3.4 40 40 24

6-6 5 aligned 4.3.3.7 16 4 explicit 16

6-5 (/\ |4) (161) 40 40 ?

6-5 (P)-(P) 4.3.3.1 40 40 10

6-4 (/|\ |3) 4.3.3.2 16 8 10

6-4 (/\2 |2) 4.3.3.2 32 32 ?

6-3(/|\ /\ |) 4.3.3.3 8 - ?

6-3 (/\3) 4.3.1 16 8 16

5-5 (/\/ |3) 4.3.3.4 40 40 24

5-5(/\ \/ |2) 4.3.3.4 24 - -

5-4 (/\/\ |2) (161) 32 - 4 (367)

5-4 (/|\/ |2) (161) 16 - ?

5-4(/|\ \/ |) (161) 8 - ?

5-4 (/|\ \/ |)4P-3P (440) 8 explicit -

5-4 (/\/ /\ |) (161) 24 - 8 (269)

5-4 (/\2 \/) 4.3.3.5 16 16 8

5-3 (/|\/\ |) (161) 8 - ?

5-3 (/\/\ /\) (161) 16 - ?

5-3 (/|\ /\/) (161) 8 - ?

5-3 (/|\/ /\) (161) 8 - ?

TABLE 4.6. Summary of the results known for the direct kinematics. In se-
quence, robot type, section or reference where the result is presented, maximum
number of assembly modes, degree of the known univariate polynomial (the ”ex-
plicit” mention indicates that closed-form solutions are known), highest number
of real solutions found in the literature.
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Robot Section Assembly modes degree Real Solutions

4-4 (/\/\/ |) 4.3.3.6 24 12 12

4-4 (/|\|/ |) (161) 8 - 4

4-4 (/|\ \|/) (161) ∞ - -

4-4 (/\/2) 4.3.3.6 16 16 ?

4-4 (|/\| |2) 4.3.3.6 16 16 16

4-4 (/\/\ \/) 4.3.3.6 16 4 ?

4-4 (\/|\/ |) (161) 16 - ?

4-4 (/|\/ \/) (161) 8 - ?

4-3 (|/\|\ |) (161) 8 - ?

4-3 (/|\/\/) (161) 8 - ?

4-3 (\/|\/\) (161) 8 - ?

4-3 (/\/\/\) (161) 16 - ?

4-3 (/|\|/\) (161) 8 - ?

4-3 (|/\| /\) (161) 8 - ?

4-3 (/\|/\\) (161) 16 - ?

3-3 (/|/\|/) (161) 8 - ?

3-3 (|/\/\|) 4.3.2.2 16 8 16

3-3 (|/\|\/) (161) 8 - ?

3-3 (|/\|/\) (161) 8 - ?

TABLE 4.7. Summary of the results known for the direct kinematics: in
sequence, robot type, section or reference where the result is presented,
maximum number of assembly modes, degree of the known univariate
polynomial, highest number of real solutions found in the literature.

4.4.1. MANIPULATORS WITH 9 LEGS

Proposition 1: Parallel robots with planar base and platform that have 9
links, such that the matrix A has full rank, admit an explicit solution for
the direct kinematics. For a set of fixed link lengths, we find two solutions,
one of which is the mirror image of the other with respect to the base.
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Such 9 legs robot are of practical interest: figure 4.17 presents a nanopod
(i.e. a 9-legged robot) that is available from Physik Instrumente. We note
that Nair does not precisely determine the cases in which the 9×9 matrix
A has full rank. The analysis of the rank of A may be performed for the

A2

A1

A4

A6

A3

A5

base

7

8

9

P

A8
A7

Figure 4.17. 6 degrees of freedom parallel robot with 9 legs. On the left a TSSM in
which the links 1-6 are actuated, whereas the links 7-9 are passive and only useful for
the direct kinematics. On the right a commercially available nanopod (courtesy Physik
Instrumente).

symmetrical TSSM (figure 4.17) in which the links 1 to 6 are actuated,
whereas the links 7 to 9 are passive and share the joint at P . In this case,
the matrix A will be full rank if the following conditions hold:
− points A7, A8, A9 are not collinear
− P is not on any of the lines B1B3, B3B5, B5B1

− A4 does not have the same y coordinate as A3

− A4 is not on the line joining A3 to the mid-point of A1A2

4.4.2. MANIPULATORS WITH 7 AND 8 LEGS

Proposition 2: Parallel robots that have 8 links, planar base and platform
and a matrix A with full rank, accept up to 8 explicit solutions for the direct
kinematics.

Consider the manipulator shown in figure 4.17. If the point P that
attaches the passive links is on the axis y of the moving platform, the
matrix A will have a full rank if the following conditions hold:
− P is not on the line B3B5

− A4 does not have the same y coordinate as A3
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− A4 is not on the line joining A3 to the mid-point of A1A2

− A7 is not on the line joining A8 to the mid-point of A1A2

Nair studies a specific case for an 8 link robot called the 8-8 robot, for
which the coordinates of the attachment points on the planar base are

A1 = (−b, a) A2 = (b, a) A3 = (a, b) A4 = (a,−b) A5 = (b,−a)
A6 = (−b,−a) A7 = (−a,−b) A8 = (−a, b)

while the coordinates of the attachment points on the planar platform are

B1 = (−y, x) B2 = (y, x) B3 = (x, y) B4 = (x,−y) B5 = (y,−x)
B6 = (−y,−x) B7 = (−x,−y) B8 = (−x, y)

He shows that the matrix A will have rank 8 if at least two of the parameters
a, b, x, y are not zero and if

a

b
�= y

x

a

b
�= x

y

Under these assumptions Nair finds a maximum of four explicit solutions
for the direct kinematics.

Proposition 3: Parallel robots with planar base and platform, with 7
links, a matrix A with full rank, and a known length ||OC||, accept up to 8
explicit solutions for the direct kinematics.

This result of Nair may be completed by a paper of Innocenti (276)
that claims that for a 6−UPS robot of general geometry with seven links
a unique solution may be found, and proposes an algorithm to find this
solution. However Innocenti’s result relies on the assumption that a given
matrix is of full rank, a claim that is not substantiated and is not true if
the base and platform are planar.

In conclusion, Nair’s formalism presents interesting results, and some-
times gives polynomial formulations. However, the delicate operation of
reducing the closure equations sometimes leads to a result that is not opti-
mal, or even to no result at all, because the calculation becomes extremely
complex. For the 6−UPS robot, Nair would obtain a polynomial of degree
144, although he did not complete the calculation because of the size of the
expressions. This formalism was elaborated for robots with RRPS chains
only; it deserves to be implemented for other types of chains.

4.5. Conclusion

In the previous sections we have presented methods for obtaining all so-
lutions of the direct kinematics. The interest of such calculation may not
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be clear as the real direct kinematic problem is to determine the current
pose of the platform i.e. its pose when the joint variables were measured. In
the next section we will present methods that may eventually calculate the
current pose, but all of them need a priori information on this pose. This
information may not be available (for example when starting the robot) and
hence it is necessary to have a solution method that does not require it.
Computing all possible solutions for the direct kinematics is a possible ap-
proach in that case. Unfortunately there is no known algorithm that allows
one to determine which solution is the current pose in the set of solutions,
and this is a challenging kinematic problem.

A possible way to design such an algorithm will be to consider that the
robot has been built in a known initial assembly mode. Only the direct
kinematic solutions that can be reached from this initial assembly mode
with a trajectory that is singularity-free (we will come back later on this
subject), that respect the constraints on the joint variables and that is
interference-free (i.e. such that the legs, platform and base do not cross)
may be valid solutions for the current pose. All these conditions have to be
taken into account as the singularity-free condition is not sufficient: it was
proved by Innocenti (275), that for planar robot two different direct kine-
matics solutions may be connected through a singularity-free trajectory,
while Chablat (80) and Hunt (252) have shown the same result for spa-
tial robots. Designing an algorithm for a complete verification is extremely
difficult, and proving that it will lead to a unique solution is still an open
problem.

Apart from solving the real direct kinematic problem, finding all the
solutions may have an interest for the singularity and workspace analysis,
as we will mention later.

Once again it is important to emphasize the problem of the certification
of the result. In some of the proposed methods, the calculation may involve a
large number of operations and may therefore be very sensitive to numerical
round-off errors. Checking the validity of the solutions with the inverse
kinematics may be necessary.

Another problem must also be mentioned. We have assumed in the
calculation that all the data that are used for establishing the inverse kine-
matic equations are exact. This is clearly usually not true: the theoretical
geometrical modeling of the robot does not exactly fit the real robot, and
the joint variables are measured and therefore uncertain. This problem was
mentioned by Guglielmetti (208) for the Delta robot.

A final problem for the above methods is that even the fastest one is
still too slow for real-time use, for example for control purposes. We will
now investigate fast numerical methods.
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4.6. Fast numerical methods

In the previous sections, we have mentioned methods for the direct kine-
matics that allow the determination of all the solutions.

In practice, it is necessary to solve the direct kinematic as often as pos-
sible to get the best possible information on the current pose of the robot.
This means that the unknown current pose will be close to the pose that
was established the last time the direct kinematics was solved. We must
therefore find the solution of a system starting with an estimate that is
”close” to the current solution. This problem is classical in numerical anal-
ysis; this is why this section will suggest various purely numerical methods,
and will compare their performances on two aspects: ability to determine
the current pose, and computation time. We shall see that under reason-
able hypotheses, some of these methods give the ”right” solution within a
reasonable time. These methods will be exemplified for a 6 d.o.f. robot, but
may be used in all cases.

4.6.1. NEWTON SCHEMES

4.6.1.1 Principle
A classical method for solving a non-linear system of equations is the New-
ton iterative scheme. Formally, assume that the coordinates X of the mov-
ing platform are related to the known joint variables vector Θ by

Θ = G(X) , (4.25)

and that X0 is an estimate of the solution. The iterative Newton scheme
at iteration k is

Xk+1 = Xk + A(Θ − G(Xk)) ,

The iterative scheme stops when ||Θ − G(Xk)|| < ε where ε is a fixed
threshold. There are many variants of the Newton scheme according to the
choice of the matrix A. We will mention:
− Newton-Raphson scheme for A = J = ∂G−1

∂Θ (Xk), where J is the Jaco-
bian matrix of the robot (see next chapter)

− Damped Newton scheme for A = αk ∂G−1

∂Θ (Xk) where αk is a gain factor
− Quasi-Newton scheme: in that case the matrix A of the Newton-Raphson

scheme is not computed at each iteration, but only once every p itera-
tions, where p is a number fixed by the user (for example it is possible
to use a constant matrix for A)

Let Xs be the solution of the problem, and define the calculation error ek

at step k of the iteration as the maximum of |Xj
s − Xj

k|. Let us assume
that, for a given scheme, there are two numbers c, r such that ek+1 ≤ c er

k:
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the number r will be called the rate of convergence of the scheme. The
convergence rate of Newton-Raphson is quadratic (r = 2) if we are suffi-
ciently close to a solution (in practice this means that at each iteration we
double the number of exact digits), while the convergence rate for the other
methods is only linear (r = 1). Hence it seems that the Newton-Raphson
scheme is the method to be used, but we will see that the choice of the
faster method is not that obvious.

4.6.1.2 Implementation for the direct kinematics
In this section we address the implementation of a Newton scheme for 6
d.o.f. robots. For a practical implementation we need first to determine
what type of vector X we should use. The Newton scheme may be used
with the minimal set of pose parameters as unknowns (499) (namely 6
for 6 d.o.f. robot) or with an extended vector including the passive joint
parameters (231) (surprisingly we will see that increasing the size of X does
not always lead to an increase in the computation time).

For a minimal representation of the pose parameters we will use the loca-
tion of C and the Euler angles for the orientation part (or any other angular
representation) and we will now establish a Newton-Raphson scheme based
on this representation. We have to establish what matrix A will be used in
this scheme. We have seen in the ”Inverse kinematics” chapter that usually
equation (4.25) is available, so that the jacobian matrix of this system may
be established and numerically calculated for a given X. The inverse of
this matrix will be the matrix J used in the scheme; that will be called the
Euler angles jacobian matrix. An estimate of the generalized coordinates
is calculated at each iteration until the corresponding joint coordinates get
sufficiently close to Θ, the threshold ε being chosen to be compatible with
the accuracy of the sensor measurements.

We can also use the following vector in order to represent the position
and the orientations:

X = [xc, yc, zc, αv] ,

where the orientation part uses the rotation vector δ = αv, where v is the
rotation axis unit vector and α is the rotation angle. We know that the
instantaneous rotation vector Ω is

Ω = α̇v + sin αv̇ + (1 − cos α)v × v̇ ;

If α is small, this relation may be written as

Ω ≈ α̇v + αv̇ = δ̇ : (4.26)

Thus the derivative of the vector X is approximately equal to the twist of
the end-effector. Consequently the jacobian of G relates the actuated joint
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velocities to the twist of the end-effector, and we will see in the next chapter
that this matrix is called the inverse kinematic jacobian. In this scheme we
calculate at each iteration the corrections to be made to the location of C,
and those to be made to the rotation vector. Using this last part, we have
to calculate the rotation matrix δR corresponding to the new orientation
of the end-effector. This is done using the following formula:

δR = I3 + (1 − cos α)v̂2 + sin α v̂ , (4.27)

where I3 is the 3 × 3 identity matrix and v̂ the anti-symmetrical matrix
associated with the vector cross-product

v̂ =

⎛
⎝ 0 v3 −v2

−v3 0 v1

v2 −v1 0

⎞
⎠

Whatever the chosen representation, the matrix J depends on the config-
uration. Furthermore we will see in the next chapter that the matrix J is
usually not available, while J−1, the jacobian of the system G can eas-
ily be calculated. Hence to apply the Newton-Raphson scheme we have to
numerically invert J−1, and the inversion of this matrix will increase the
computation time of the algorithm. The use of the quasi-Newton scheme
with J calculated at regular intervals, or constant, may thus be justified.
In that case the iterative scheme needs only the calculation of the inverse
kinematics at each iteration, and the computation time will therefore be
approximately a multiple of the inverse kinematics computation time.

The choice of using angles to represent the orientation of the end-effector
may cause a representation problem. For instance, for the Euler angles, the
jacobian of the system G is singular for θ = 0. Choosing another set of
angles with a singularity away from the workspace of the robot is possible,
but singularity may still occur during the scheme. A better solution is
to switch to the quasi-Newton scheme as soon as the determinant of J−1

become small.

Another possible implementation for 6−UPS robots consists in using
a specific result that we presented in the chapter devoted to the inverse
kinematics: we established that we could express the coordinates of the
center of the moving platform as a function of the rotation angles and the
link lengths. We can then conceive methods where the Newton scheme is
used on the system that involves only the rotation angles, the location
of the platform being calculated, at each iteration, directly from the link
lengths and the new rotation angles. We can thus hope for a decrease in
the computation time as the size of the system to be solved is reduced.
A numerical study shows however that this approach may have overall a
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larger computation time: the computation time of each step is smaller, but
the convergence domain decreases notably, thereby leading to a much larger
number of steps before convergence.

Another choice for X consists in representing the pose of the platform
(supposed to be planar) by the coordinates of three specific points on it
i.e. by 9 unknowns. Indeed if the coordinates of these points in the refer-
ence frame are known, then the pose of the platform will be completely
determined. Let us assume that we are using the coordinates of the points
B1, B2, B3. We first note that there are always three triplets (αi, βi, λi) of
constants with αi + βi + λi = 1, called the barycentric coordinates, such
that:

OBk = αk OB1 + βk OB2 + λk OB3 k ∈ [4, 6] (4.28)

For a given platform geometry the barycentric coordinates of a point may
be calculated by solving the linear system

CBkr = αk CB1r + βk CB2r + λk CB3r (4.29)

The positions of the points B4, B5, B6 may therefore be calculated from the
positions of B1, B2, B3. The 9 unknowns must be such that they satisfy the
following 9 constraint equations:

||BiBj||2 = l2ij i, j ∈ [1, 3], i �= j ; G(OBk,Θk) = 0 k ∈ [1, 6]

The 3 first equations indicate that the distances between pairs of points in
the set B1, B2, B3 shall be known constants. The remaining 6 equations are
the inverse kinematic equations of the leg k that connects the actuated joint
variable Θk to the location of point Bk (for example for a Gough platform
we will have ||AkBk||2 = ρ2

k). These 9 equations are all functions of the 9
unknowns if we use the relations (4.28) and may be written as F (X) = 0.
One can then use Newton’s method on this system, and initialize it by an
estimate of the positions of B1, B2, B3. We must however note that, as in
the case of the previous algorithms, it is difficult to calculate the jacobian
matrix of the system (see exercise 4.8).

Whatever the type of iterative method, we note that the Newton scheme
involves calculations that can be done in parallel: we could therefore use
a distributed implementation in order to reduce the computation time.
Guglielmetti (208) shows that a method which requires 640 µs on a single
processor board may requires only 343 µs on a system with four proces-
sors. Other authors have suggested the use of a distributed implementa-
tion (198).

4.6.1.3 Drawbacks of the Newton schemes and real-time issues
It is widely believed that the Newton schemes will converge as soon as the
initial estimate is sufficiently ”close” to a solution, and that this convergence
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will lead to the solution that is the closest to the initial guess. Unfortunately
both assumptions are wrong: Newton schemes may not converge (as we will
show in the examples) and it is easy to find counter-examples for the second
assumption (see exercise 4.9). The inversion of the Jacobian matrix may
also cause a convergence problem when the matrix J−1(Xk) is close to being
singular. Both problems pose an important reliability problem, especially
if the direct kinematics is used in a control loop, as an incorrect answer (or
no answer) will lead to incorrect control.

Fortunately, when using Newton’s method for control purposes, we have
some bounds on the solution parameters: given the sampling time of the
controller, the maximal velocity of the platform, and the latest pose, we can
derive the extremal values for the new pose parameters. Consequently we
may detect if Newton’s method has converged towards an incorrect solution,
unless more than one solution satisfies the extremal values constraints (for
a slow moving robot this should not occur, as such closeness of 2 solutions
implies a nearly singular J−1, which will lead to a failure of the calculation
of the inverse).

Still, from the control viewpoint, it is important to note that the com-
parison of the computation time of the various direct kinematics procedures
has to take into account the sampling time of the robot controller. Indeed,
the controller will make available the joint coordinates measurements only
at each sampling time. Similarly a processor devoted to the solution of the
direct kinematics will only provide its result according to the controller
clock. Hence all direct kinematics procedures that are able to provide the
solution at the end of the same number of controller clock cycles are equiv-
alent. Consequently, for control purposes, we may use a direct kinematics
procedure that may not be the fastest available in absolute term, but the
one that leads to the most reliable result, provided that the additional
computation time, compared to the fastest method, does not exceed the
sampling time.

4.6.1.4 Convergence of the Newton schemes
The drawbacks of the Newton schemes lead us to investigate more closely
the convergence domains of these schemes. We consider a system f(X) = 0,
where f is a vector of dimension n, and investigate the convergence of the
Newton-Raphson scheme for this system.

In the following study, the norms for vectors and matrices are defined
thus:

if A = ((aij)) then ||A|| = maxi

∑
j

|aij| .

We define a starting point X0 for the iteration and a closed neighborhood
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around this point:
U(X0) = {||X − X0|| ≤ H} .

Kantorovitch’s theorem (575) states that:

1. if the jacobian matrix of the system J = (( ∂f
∂xj

)) has an inverse J−1 at
X = X0 with ||J−1|| ≤ A0 ,

2. if there is a constant B0 such that

||J−1f(X0)|| ≤ B0 ≤ H
2

, (4.30)

3. if there is a constant C such that

k=n∑
k=1

∣∣∣ ∂2fi(X)
∂xi∂xj

∣∣∣ ≤ C .

for i, j = 1, 2..., n and all X in U(X0),
4. if the constants A0, B0, C satisfy the inequality:

µ0 = 2nA0B0C ≤ 1 , (4.31)

then the iterative scheme:

Xk+1 = Xk − J−1(Xk)f(Xk)

with the initial estimate X0 converges towards the unique solution of f(X) =
0 in U(X0). The size of the convergence domain is therefore given by
Min(B0,

1
2nA0C ). A similar result is obtained for the quasi-Newton scheme

when the matrix J is constant, with a smaller convergence domain. Kan-
torovitch’s theorem must be understood as providing a lower bound for the
radius of the convergence domain, a bound that may be exact in some cases.
It may thus happen that, for a given solution, the convergence domain is
larger than the bound provided by the theorem.

We applied this theorem to the Newton-Raphson scheme, in which the
pose of the platform is represented by the position of three points Bi, using
as robot the INRIA left hand. Choosing the most favorable triplet of points
for the pose Xnom defined by xc = yc = 0, zc = 53.3, ψ = φ = θ = 0, we
find A0 = 0.214, B0 = 3.328, C = 4. The application of the inequality (4.31)
leads to a convergence domain with diameter 0.0648. However numerical
experiments shows that the Newton-Raphson scheme always converges to
Xnom in a much larger domain.
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4.6.1.5 Extending the unicity domain: the inflation
We have seen that Kantorovitch’s theorem allows one to determine a do-
main in which there is one and only one solution but also that the size of this
domain may only be a lower bound. We will see later on that determining
the largest domain around a solution may be of interest. For that purpose
we will briefly describe a procedure, called inflation, that may enlarge the
domain determined by Kantorovitch’s theorem (detailed mathematical ex-
planation about this procedure may be found in (445)). Assume that X0 is
a solution of the system f(X) = 0 and let D be a domain that includes X0.
It is easy to show that if the Jacobian matrix J of f is non singular over D,
then X0 is the only solution in D. The problem is now to determine the
largest possible domain D around X0 so that J(X) is non singular for all
X in D.

For that purpose, let us define a diagonally dominant n × n matrix
J = ((Jij)) as a matrix such that

∀i ∈ [1, n], |Jii| >
j=n∑
j=1

|Jij |, j �= i

One of the properties of a diagonally dominant matrix is that it is non
singular. In the procedure proposed by Neumaier (445), the domain D is
initialized with X0, and its size is iteratively increased by a fixed quantity
β. At each step, interval analysis is used to verify that J(X) is diagonally
dominant over D. But for the direct kinematic solution procedure using
the coordinates of 3 points as representation of the pose of the platform,
we have been able to show that it is possible to determine directly the
largest possible β such that for any X in the domain [X0 − β,X0 + β], J is
diagonally dominant (417).

4.6.2. INTERVAL ANALYSIS SCHEME

As mentioned previously, an interval analysis solution method is appropri-
ate for the direct kinematics (417). A property of this method is that its
computation time is sensitive to the size of the domain in which we are
looking for solutions. For the real-time direct kinematics we have already
seen that, if we know the solution Xk

0 at time k, it is easy to determine
a hyper-cube search domain S1 whose center is Xk

0 , and whose size may
be determined, so that S1 is guaranteed to include the pose at time k + 1.
Using the direct kinematics solution algorithm based on interval analysis,
we are able to determine certified solution(s) in S1. Two failure cases may
occur:
− the solution is not certified: this occurs when the matrix J is nearly

singular
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− two certified solutions are determined (more certified solutions may
exist but the algorithm stops as soon as at least 2 solutions have been
found)

In both cases, if the direct kinematics is used in a control loop, it is necessary
to stop the robot immediately.

Note that an interesting alternative to interval analysis, that uses the
same branch-and-bound principle, is based on the transformation of the
inverse kinematic equations into Bernstein polynomials (43).

The certification of the solution will be time consuming. The next sec-
tion will present some experimental tests of a preliminary version of this
method; it is not easy to implement.

4.6.3. METHODS EFFICIENCY AND COMPUTATION TIME

We will compare the different suggested procedures, for the INRIA left
hand robot, and a set of test values. The methods are as follows:

− 1: quasi-Newton method with kinematic jacobian. The algorithm cal-
culates the rotation matrix, but not the corresponding Euler angles.

− 2: quasi-Newton method with Euler angles jacobian. Euler angles are
therefore computed

− 3: quasi-Newton method using 3 points to represent the pose of the
moving platform

− 4: polynomial form. The platform is simplified so that the robot be-
comes a TSSM. The computation time will be identical for all tests.

− 5: interval analysis algorithm using 3 points to represent the pose of
the moving platform

Table 4.8 shows the values chosen for the tests. The jacobians used
in the quasi-Newton methods are estimated at (0, 0, 40, 0, 0, 0) for the
kinematic jacobian, (0, 0, 40, 0, 12, 0) for the Euler angles jacobian. The
error threshold on the link lengths is 0.01 cm. For method 3 the initial
estimates of the location of the points are derived from the pose parameters
used as initial guesses for the other methods. For method 5, the size of the
search domain for each test is fixed as four times the difference between the
exact and estimated values given in the test.

Table 4.9 shows the computation times for the various methods estab-
lished on Dell D400, 1.2 GHz. The results may be summarized thus:
− the quasi-Newton method using the kinematic jacobian presents the

best characteristics as far as convergence and computation time are
concerned.

− the quasi-Newton method using Euler angles jacobian exhibits good
computation time but its convergence domain is smaller than that for
the previous method.
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− the three point method works almost in a constant time which is larger
than those of the previous two methods; its convergence domain seems
larger, and it provides a better estimate of the orientation.

− the method using interval analysis approach is much slower than the
other methods although largely compatible with real time constraints.
This method is penalized by the choice of the search domain and the
certification of the result. Note also that its current implementation
may be largely improved; still it is the safest method

− for the special case of the TSSM, the polynomial form has a computa-
tion that is only 10 to 20 larger than the Newton schemes

test number xc yc zc ψ θ φ

(0) exact value 3 3 40 0 0 0

estimated value 2.9 2.9 39.9 0.5 -0.5 0.5

(1) exact value 3 3 40 0 0 0

estimated value 0 0 40 0 0 0

(2) exact value 3 3 40 0 0 0

estimated value 2.95 2.95 39.95 0.1 -0.1 0.1

(3) exact value 3 3 40 0 0 0

estimated value 0 0 45 0 0 0

(4) exact value 4 -5 47 15 -10 20

estimated value 0 0 45 0 0 0

(5) exact value 2 -2 46 15 -10 20

estimated value 0 0 45 0 0 0

TABLE 4.8. Test positions values (angles in degrees).

Finally let us note that all the numerical methods presented in the above
sections assume that, even with modeling and measurement uncertainties,
there is a solution to the direct kinematics. An alternative approach to
deal with uncertainties is to use a nonlinear observer based on the dynam-
ics of the robot, but its final errors seem not to be compatible with fine
positioning (313)∗.

4.6.4. PATH TRACKING

A problem related to direct kinematics is the path tracking problem: given
time laws for the actuated joint coordinates, determine what will be the
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method/test number 0 1 2 3 4 5

1 2.4 1.8 1.3 1.9 6.1 4.3

2 2.5 3.2 1.7 3.1 - -

3 3.87 3.85 3.86 3.87 4.04 4.04

4 39.9

5 300 340 300 390 460 390

TABLE 4.9. Computation time for direct kinematics resolution (in
µs, sign - indicates a non-convergence of the algorithm).

trajectories of the robot. For that purpose Siciliano (539) has proposed
the CLDK algorithm that assumes that the initial pose at time T = 0 is
known. The interval analysis scheme may also be used for that purpose: all
initial poses are obtained by the interval algorithm and then a continuation
scheme based on Kantorovitch’s theorem with an adaptive time step allows
us to follow all the kinematic branches very efficiently with zero tracking
errors (417).

4.7. Direct kinematics with extra sensors

The results presented in the previous sections show that, with progress in
algorithms and processor speed, direct kinematics is less a problem than it
was a few years ago. Still we have seen that finding the current pose of the
robot may be difficult, even with good information on the location of this
pose. Furthermore it may be interesting to investigate how to improve the
computation time, as direct kinematics is an important issue for control.
One possible approach to solve these problems is to add sensors (i.e. to have
more than n sensors for a n d.o.f. robot) to obtain information, allowing a
faster calculation of the current pose of the platform, at the cost of more
complex hardware. We will also see in the calibration chapter that adding
sensors is justified by the possibility that they offer for the auto-calibration
of the robot.

This solution was adopted in practice by Arai and Stoughton (14) and
Inoue (277). Inoue’s robot has rotation sensors measuring the inclination
of the parallelograms of his robot, whereas Arai adds an extra arm, with 2
rotation sensors at each end, and a sensor measuring the length of the arm.

Adding extra sensors induces some interesting problems:
− what are the types, locations and minimal number of sensors that are
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necessary to obtain a unique solution for the direct kinematics?
− given the measurement errors of the extra sensors, is the accuracy

of the computed pose compatible with the desired accuracy for the
manipulator ?

In the remaining section we will illustrate these problems on the 6−UPS
robot. These problems have been investigated for other type of robots:
Notash (450) investigated the addition of a fourth chain to a 6 degrees of
freedom robot possessing 3 chains, while Parenti studied the problems for
the spherical wrist equivalent to the 6-4 robot with 3 legs attached at the
same point on the platform (464).

4.7.1. TYPE AND LOCATION OF THE EXTRA SENSORS

There are two types of sensors that can be added:

− angular sensors that may be placed on the passive joints of the ma-
nipulator, if possible near the base in order not to make the moving
equipment heavier

− linear or angular sensors that are placed on extra passive chains or
between existing chains.

The main drawback of adding passive arms is the risk that the workspace
may be reduced, because of the even more important risk of link interfer-
ence. On the other hand, angular sensors placed on the joints may present
the same drawbacks for accuracy as for serial robots, since the measure-
ment error will be amplified by the length of the links: one may therefore
expect relatively poor accuracy in the estimated pose of the platform.

4.7.2. MAXIMAL NUMBER OF SENSORS

Determining all possible sensor layouts (location, type and number of sen-
sors) that yield a unique solution for the direct kinematics is far from being
trivial. Adding a sensor either leads to an additional constraint equation
or to a simplification of the initial inverse kinematics equations. This new
system may have only one solution, so that the sensor layout is a candidate
for an implementation. On the other hand, the new system may still admit
theoretically several solutions but the sensor layout may be acceptable if
there are multiple solutions only for specific poses or particular robots ge-
ometries, that are not physically meaningful. We will now present known
results for various sensor layouts.

4.7.2.1 Addition of angular sensors
Consider a 6−UPS robot to which we add rotation sensors at the level
of the universal joints on the base, i.e. one or two sensors are added to
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each joint. If we assume that a universal joint has two sensors, we may
measure the direction of the link. Furthermore, the joint sensor provides
the length of the link. As a consequence, we may calculate the position of
the extremity of the link that belongs to the platform.

If three links are instrumented, which means adding 6 sensors, we can
calculate the position of three points of the platform and hence solve the
direct kinematics problem. Thus, 6 sensors are enough to determine the
pose of the moving platform; this sensor configuration will be called 2-2-2,
each digit corresponding to the number of sensors placed on a link.

Another interesting configuration is the 2-2, 2 sensors on 2 universal
joints: it can be shown that, in general, 2 solutions may be obtained for
the direct kinematics, but only for very particular poses of the robot (400),
which means that in practice, the solution is unique.

A key result is the one proposed by Parenti (461): with only one ad-
ditional angular sensor, it is possible to determine the current pose of the
platform as long as the base and platform are planar. In the general case,
the solutions may be obtained from the common roots of 2 univariate poly-
nomials of degree 40. A drawback of the approach presented by Parenti
is that the calculation is too complex to be done in real time. The same
author proposes a real-time solution for the 2 sensors case (462)∗ that leads
to one solution. Hence every layout including a 2 configuration, such as 2-2,
2-2-2, 2-2-1, 2-2-1-1, 2-1, 2-1-1, 2-1-1-1, 2-1-1-1-1, will have only one solu-
tion. Similarly, for a SSM, any layout including one angular sensor will have
only one solution. The extensive study of Tancredi (573)∗ of each layout
may complement the results proposed by Parenti.

Open problems remain for robots having non coplanar attachment points
on the base and/or on the platform, and whose sensor layout involves only
1 sensor per leg. If we have at least 3 such sensors, then a TSSM is included
in the structure, and consequently the number of solutions cannot exceed
16. For a robot with 1-1 layout an upper bound of the number of solutions
is 32, while the layout with one angular sensor has evidently at most 40
solutions. Baron (26)∗ has proposed an interesting algorithm when the sen-
sors layout allows for a kinematic decoupling between the translation and
orientation of the moving platform. In that case the determination of the
orientation part can be cast as a linear algebraic system constrained by the
orthogonality condition of the rotation matrix.

4.7.2.2 Addition of linear sensors
This method consists in adding passive extensible links with measured
lengths. It is an interesting method because the estimation of the pose
will be less sensitive to measurement errors than with angular sensors.

Section 4.4 showed that for the TSSM, adding three passive links sharing
a joint on the moving platform allows us to calculate two explicit solutions,
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except for particular geometries, which we presented in section 4.4.1. We
also know that it is not necessary to investigate the case of a robot with
planar base and platform when less than 3 links are used, since Nair (440)
has shown that for 8 links, up to 8 explicit solutions could be found. For
a general geometry of the base and platform, Innocenti claims that with
7 legs a unique solution may be found (276), but this claim relies on a
given matrix being of full rank, and this assumption is not substantiated.
As for the SSM, Nair showed that adding three passive links usually gave
two solutions which are symmetrical with respect to the base (and hence
one of the solutions can be discarded). Bonev (49) proposes for the SSM
a specific arrangement of the 3 additional legs that allows for an analytic
calculation of the solution. The same author has also studied the addition
of 3 legs when only the platform is planar, but was unable to show that the
solution was unique (44).

4.7.2.3 Combination of angular and linear sensors
Chiu (95) has proposed a method for the 6−UPS robot that involves 3
additional sensors: 2 rotation sensors at the universal joints located at A1

on the base, and a linear sensor on a passive leg that connects the base and
platform, the attachment point on the platform lying on the line B1, B2.
This layout leads generally to 4 solutions, but Chiu provides necessary and
sufficient conditions to get a unique solution together with an algorithm
that allows one to track the current pose during a motion.

4.7.3. RELATIONSHIP BETWEEN SENSORS ACCURACY AND POSE
ACCURACY

It is extremely interesting to be able to calculate a unique solution to the
direct kinematics, but the calculation accuracy, for given measurement er-
rors, should remain compatible with the accuracy required for the robot.
Thus Arai (14) uses only the measurement of the pose that was obtained
from a passive arm as an initial estimate for an iterative algorithm. If the
measured pose is close to the solution, the certified Newton method will
quickly converge toward the solution, provided that we are not close to a
singularity.

Another possible approach is to determine the maximal allowed error for
the extra sensors so that we can reach a desired accuracy on the estimated
pose for any pose within a given workspace. A preliminary study was per-
formed by Stoughton (554), and an extensive study of the relation between
the error on the pose and the errors on the extra sensors was carried out
by Tancredi (573)∗. He explicitly calculated the matrix relating the errors
in the pose of the moving platform to the errors in the angular sensors. He
did this for the 2-2 layout and could thus draw maps showing the necessary
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sensor accuracy. For example, figure 4.18 shows the maximal distance be-
tween the real pose and the calculated pose for the 2-2, when the maximal
sensor errors are 0.0062 radians, and when the platform moves in the x− y
plane. These maps just give indication on the maximal allowed value for
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Figure 4.18. Maximal distance between the calculated pose and the real pose in the
2-2 case for maximal sensor errors of 0.0062 radian and when the platform moves in the
x − y plane.

the sensor errors for typical robot motion; we will present in section 5.4.2.5
an algorithm that allows one to effectively compute this maximal allowed
value over a given workspace.

Another approach is suggested by Baron and Angeles (26); they use
layouts for which the direct kinematics equations become linear in the co-
ordinates of C. After solving three of such equations, only the rotation
matrix has to be calculated; they suggest an estimation method for the
rotation matrix that minimizes the positioning errors. Vertechy (594) pro-
poses an alternate method that is less computer intensive, but is valid only
for 6-3 robots.

Finally Chiu (95) provides a method for his special layout that allows for
the determination of the location of the attachment points of the redundant
leg that minimizes the error in the direct kinematics, but only for a specific
pose of the platform.

4.8. Exercises

Exercise 4.1: Show that the manipulator of figure 4.4 has at most 4
assembly modes. Look at the value of the polynomial for T = −1, 1.
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Exercise 4.2: Show that the robot in the following figure has 4 assem-
bly modes that may be obtained by solving a sequence of two quadratic
equations.

A1 A2 A3

B1
B3

l

ρ1

ρ2
ρ3

Exercise 4.3: Determine the direct kinematics of the various planar
parallel robots that are presented in the chapter ”Architecture”.
Exercise 4.4: Consider Ming’s over-constrained planar robot (422). It is
made of a rectangular platform whose corners are linked to the ground by 4
wires. Show that the maximum number of solutions for its direct kinematics
is still 6.
Exercise 4.5: Show that the Star robot admits two solutions for the
direct kinematics
Exercise 4.6: We consider the following parallel robot, described by
Husain (253): the moving platform is linked to the base by 3 chains. Two
of these chains are made of three successive revolute joints. The revolute
joint that is linked to the base is passive, while the others are actuated.
The third chain is made of a universal joint that is attached to the base,
each axis of this joint being actuated, and which is followed by a passive
prismatic joint. The chains are linked to the moving platform via ball-and-
socket joints. Show that the direct kinematics for this type of mechanism
has at most 16 solutions. Suggest a way to obtain a univariate polynomial
which will give the solutions.
Exercise 4.7: Consider the robot represented on figure 4.19; Nair calls this
W0. Using Nair’s method, show that this robot admits up to 8 solutions
for the direct kinematics, and that they may be determined explicitly.

O

C

A6

B6

Figure 4.19. The W0 manipulator
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Exercise 4.8: Calculate the inverse of the jacobian matrix that appears
in the iterative method using the position of three points Bi to represent
the pose of the moving platform.
Exercise 4.9: Let f be the function defined by f = sin(x+1)eex

+1. Plot
the function f for x in [-2.2,2.2] to determine the two solutions of f = 0
in the range [-2.2,2.2]. What are the solutions given by the Newton scheme
with as initial guess -2.5, -2, -1.5, 0, 1, 2 ? Explain why Newton converges
with the initial guess 2 to this solution although there is another solution
that is much more to the initial guess.

Exercise 4.10: Show that for a TSSM, the addition, under certain
conditions, of three extra angular sensors allows us to determine the direct
kinematics uniquely.
Exercise 4.11: Show that under the condition of the previous exercise, a
TSSM that is equipped with two angular sensors, will in general have only
one solution for the direct kinematics.
Exercise 4.12: Under what condition will a TSSM that is instrumented
with two angular sensors, as in the previous exercise, have two solutions for
the direct kinematics?
Exercise 4.13: Show that a TSSM that is instrumented with one angular
sensor, under the conditions found in the previous exercise, will have one
solution for the direct kinematics.
Exercise 4.14: Show that the Nabla 6 robot described in figure 2.36,
admits at most 16 solutions for its direct kinematics.
Exercise 4.15: Show that solving the Hexa direct kinematics is equivalent
to solving that of the 6−UPS robot.
Problem 4.1: Find the maximum number of solutions to the direct
kinematics of the robot proposed by Zoppi (figure 2.31) and find all the
solutions
Problem 4.2: Consider the robots for which an upper bound of the num-
ber of assembly modes is known. Is it always possible to find a manipulator
with this number of assembly modes? If the answer is ’no’, give a counter
example
Problem 4.3: Is it possible to determine all the special layouts of joints for
a given architecture such that an analytic solution of the direct kinematics
may be obtained, see for example (325) for the 6−UPS robot?
Problem 4.4: Are there geometries for the TSSM for which the direct
kinematics polynomial may be factored?
Problem 4.5: Can we obtain a condition on the geometry and joint
variables of a TSSM so that the direct kinematics will have 16 solutions ?
Problem 4.6: May Nair’s method be extended to other robot architec-
tures such as the robots that have chains of the PRRS type?
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Problem 4.7: May the frequency of obtaining various numbers of assem-
bly modes for a given workspace be determined from the architecture and
the geometry of a manipulator?
Problem 4.8: Design an algorithm that uses the conditions presented in
section 4.5 to eliminate infeasible solutions for the direct kinematics, and
determine under what conditions this algorithm leads to a unique feasible
solution
Problem 4.9: Determine the minimal number of sensors to add to the
various planar parallel robots that are presented in the chapter ”Architec-
ture”, so that an unique solution is found for the direct kinematics.
Problem 4.10: Determine under what conditions all layouts with only
one additional angular sensors in the legs for a 6−UPS robot will lead to
a unique direct kinematics solution
Problem 4.11: Determine under which geometrical condition a 6−UPS
robot with seven instrumented legs has a unique solution to its direct kine-
matic (276)
Problem 4.12: Determine the positioning and the minimal number of
linear sensors that should be added to the 6−UPS robot to obtain a unique
solution for the direct kinematics.
Problem 4.13: Using the results of the previous problem, determine
the relation between the error in the estimation of the pose and the sensor
errors.
Problem 4.14: Suppose a linear sensor is placed between two fixed points
of two links of a 6−UPS robot. How many sensors of this type are necessary
in order to obtain a unique solution for the direct kinematics?



CHAPTER 5

Velocity, accuracy and acceleration analysis

This chapter will deal with the determination of the relations between the
twist of the moving platform and the actuated joint velocities. We will
establish how the limits on the joint velocities influence the allowed twist
of the end-effector. We will then present the relations between the joint
accelerations and the cartesian and angular accelerations of the platform.

5.1. Kinematics relations

Let Θa, Θp be the actuated and passive joint velocities, and W the twist
of the end-effector constituted of V, the cartesian velocity of a specific
point of the end-effector, called the operating point, and of Ω, the angular
velocity vector. We assume here that all joints have 1 d.o.f. (higher pairs
may be decomposed into a combination of 1 d.o.f. joints) and we will follow
Zlatonov (663) by defining the forward instantaneous kinematic problem
(FIKP) as determining the twist W and the passive joint velocities Θp

as functions of the active joint velocities Θa. The inverse instantaneous
kinematic problem (IIKP) is to determine the passive and active joint
velocities Θp, Θa as functions of the twist W. It must be noted that the
twist depends upon the choice of the operating point and hence any relation
involved in FIKP and IIKP will be affected by the location of this point.

5.2. Inverse jacobian matrix

We consider here a non-redundant parallel robot with n d.o.f. and having N
joint variables, n of which are the actuated joint variables Θa. We showed
in the ”Inverse kinematics” chapter that it is possible to obtain various
relations between the joint coordinates and the generalized coordinates with
the generic form:

H2(X,Θ) − H1(X) = 0 . (5.1)

If Θ include all passive and active joint variables there are N +n unknowns
in these equations. As the robot should have mobility 0 when the n actuated
joints are locked the number of equations in (5.1) should be N . We may
also distinguish a particular case of relations (5.1), that will be called the

153
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minimal kinematics set (MKS), in which Θ is reduced to the n actuated
joint variables Θa, leading to a system of n equations.

We assume that the platform twist W consists of the p-dimensional
cartesian velocity vector V and of Ω, the q-dimensional angular velocity
vector. A differentiation of (5.1) allows us to obtain a relation of the type:

A(X,Θ)Θ̇a + B(X,Θ)Ẋ + C(X,Θ)Θ̇p = 0 , (5.2)

where A,B,C are N × n, N × n, N × (N − n) matrices. In the following
analysis we will omit indicating that matrices A,B,C are functions of the
pose parameters and joint variables.

If the robot has at most one rotational d.o.f. (i.e. q ≤ 1), then the ori-
entation representation may be chosen so that its derivative is the angular
velocity of the end-effector i.e. Ẋ = W. Otherwise the derivatives of the
orientation representations are not the components of the angular velocity
of the platform. For example if we use the Euler angles to represent the
orientations of the end-effector, the angular velocity vector Ω is related to
the derivatives of the Euler angles by

Ω = Te

⎛
⎜⎝ ψ̇

θ̇

φ̇

⎞
⎟⎠ =

⎛
⎝ 0 cos(ψ) sin(ψ) sin(θ)

0 sin(ψ) − cos(ψ) sin(θ)
1 0 cos(θ)

⎞
⎠
⎛
⎜⎝ ψ̇

θ̇

φ̇

⎞
⎟⎠ (5.3)

As a general rule we will have

W = HẊ Ẋ = H−1W (5.4)

Clearly equation (5.2) is not unique and will vary according to the choice
for X and Θ (see for example (634) for a relation that involves only Ẋ, Θ̇p).
If we use the MKS, then equation (5.2) is

AΘ̇a + BẊ = 0 , (5.5)

This equation relates the end-effector cartesian velocities and the deriva-
tives of the orientation representations to the actuated joint velocities. A,B
are both n × n square matrices, and provided that A is invertible we get:

Θ̇a = −A−1BẊ = J−1Ẋ ,

where J−1 is a matrix that will be called an inverse jacobian matrix. If the
end-effector has 3 rotational d.o.f. and we are using the Euler angles to
represent its orientation, J−1 is a matrix J−1

e that we will call the Euler
angles inverse jacobian matrix.

The matrix relating the end-effector velocity vector to the actuated
joint variables, that defines the velocity linear input-output equations, will
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be called the inverse kinematic jacobian matrix J−1
k . The inverse kinematic

jacobian matrix is essential for the velocity and trajectory control of parallel
robots. Using (5.4) we get

AΘ̇a + BH−1W + CΘ̇p = 0 , (5.6)

As noticed by Gosselin and Angeles (189), if we use the MKS we get

AΘ̇a + BH−1W = 0 , (5.7)

Consequently
J−1
k = −A−1BH−1 = J−1H−1 (5.8)

As H is a nonsingular matrix, J−1
k , J−1 will be singular or nonsingular at

the same time. Equation (5.7) is usually written as:

AkΘ̇a + BkW = 0 , (5.9)

Note that in general the inverse kinematic jacobian is not a jacobian
matrix in the strict mathematical sense of the term, since there is no rep-
resentation of the orientation of a rigid body, the derivative of which with
respect to time corresponds to the rigid body angular velocities.

Another point is that for a manipulator with n < 6 d.o.f. it may sound
interesting to determine only the n × n inverse kinematic jacobian that
relates the actuated joint velocities to the possible d.o.f. velocities. We
will see however in the next chapter that determining an inverse kinematic
jacobian that involves Θ̇a and the full twist of the end-effector may be
essential for singularity analysis. This type of matrix is coined a overall
jacobian by Joshi (293) but we will call it a full inverse kinematic jacobian.

5.2.1. EULER ANGLES INVERSE JACOBIAN

As seen previously a simple derivation allows us to calculate the inverse
jacobian matrix for a representation of the orientation by the Euler angles,
as shown in the following example.

5.2.1.1 Example: 6−UPS manipulator
The square of the leg lengths ρ may be obtained as

||AO||2 + ||CBr||2 + 2((AO + RCBr).OC + AO.RCBr) + ||OC||2 (5.10)

Matrix A is therefore 2 times the diagonal matrix in which the diagonal
elements are the ρi. The derivatives of the right side of (5.10) with respect
to (xc, yc, zc) are the components of 2(AO+RCBr)+2OC = 2AB. Hence
the 3 first components of a row of the matrix B are the components of AB.
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For the orientation part, the term of the equation (5.10) containing the
orientation parameters is 2(OC+AO)RCBr. If Q represents the derivative
of RCBr with respect to one of the Euler angles, then the corresponding
component of B is 2AC.Q. Consequently a row of the Euler inverse jacobian
matrix is:

(
AB
ρ

,
AC.Qψ

ρ
,

AC.Qθ

ρ
,

AC.Qφ

ρ
)

This matrix can be easily computed, especially if the inverse kinematics
has been computed beforehand.

5.2.2. INVERSE KINEMATIC JACOBIAN

We have already seen a method for deriving the inverse kinematic jacobian
from the matrices A,B of the MKS. There are other ways to derive the
inverse kinematic jacobian (see for example the ”Static” chapter or the use
of Grassmann-Cayley algebra for that purpose (142; 549)). In this section
we derive the inverse kinematic jacobian from a velocity analysis. Consider
the velocity of an attachment point Bi of a given leg on the end-effector. It
may be expressed according to the velocity of C and the angular velocity
vector Ω by

VBi
= VC + BC × Ω (5.11)

In matrix form this equation may be written as a function of the velocity
vector of the end-effector W as

VBi
= JXi

W

Now let ωi be the joint (actuated and passive) velocity vector of leg i. The
velocity of Bi may also be expressed as

VBi
= JΘiωi

Equating the two previous equations leads to:

JXi
W = JΘiωi (5.12)

Combining these equations for all legs leads to an inverse jacobian that
relates linearly the velocity vector of the end-effector W to the velocities of
all joint, actuated or not. If we are interested only in the inverse kinematic
jacobian, we must eliminate the passive joint velocities from equation (5.12).
As the equations (5.12) are linear, this may be done by linear elimination,
but the process may be tedious. The concept of reciprocal screw may be of
some help. This idea, pioneered for parallel robots by Mohamed (425)∗, has
been put in use for may robots (see for example (293)). The first step of the
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method is to write the equation that states that the instantaneous twist of
the end-effector is a linear combination of the instantaneous twists of the
legs. The second step is to identify, for a leg with g actuated joints, g screws
that are reciprocal to the screw system associated with all the passive joints
of the legs. The orthogonal product of these screws with both sides of the
equation obtained at step 1, leads to a set of g equations that are free from
the velocities of the passive joints. Combining these equations for all legs
allows one to get the inverse kinematic jacobian.

The difficult step of this method is the second one. A profound knowl-
edge of reciprocal screws is needed to complete this step and we may still
need some mechanical intuition. Also, dealing only with equations may
hide the geometrical interpretation of the inverse kinematic jacobian (see
for example (587)) that will be quite important for singularity analysis.

We will present now the calculation of the full inverse kinematic jacobian
matrices for various examples.

5.2.2.1 Example: planar 3-RPR manipulator
Let θ be the rotation angle of the platform around C. Although the robot
is planar, we will use 3D vectors. Let us define Ω as (0, 0, θ̇) and ni as the
unit vectors of the legs. The velocity VB of the point B is

VBi
= V + BiC × Ω VBi

= ρ̇ini

Equating the dot product by ni of the right terms of these equations leads
to

ρ̇i = ni.V + (CBi × ni).Ω (5.13)

The above equation allows us to compute a row of the 3×3 inverse kinematic
jacobian matrix relating the joint velocities to the twist vx, vy, θ̇. It may also
be used to calculate rows of a 6× 6 full inverse kinematic jacobian matrix.
The other rows are obtained from the constraint equations indicating that
the robot motion are planar

V.z = 0 Ω.y = 0 Ω.x = 0

The full velocity equations may therefore be written as:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ̇1

ρ̇2

ρ̇3

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= J−1W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n1 CB1 × n1

n2 CB2 × n2

n3 CB3 × n3

z 0
0 x
0 y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vx

vy

vz

Ωx

Ωy

Ωz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.14)

which establish a full inverse kinematic jacobian.
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5.2.2.2 Example: 3 − UPU manipulator
The inverse kinematic equations giving the square ρ2 of the link lengths are
established as:

ρ2 = ||OC||2 + 2(AO + CB).OC + (AO + CB)2 . (5.15)

By differentiating this equation we obtain

ρρ̇ = V.AB , (5.16)

A row of the 3 × 3 inverse kinematic jacobian matrix is therefore obtained
as AiBi/ρi. Let us now calculate the full inverse kinematic jacobian matrix.
We start by calculating the velocity VB of the B points.

VB = V + BC × Ω (5.17)

Let us define n as the unit vector of the leg, and compute the dot product
of the right and left terms of the previous equation:

VB.n = ρ̇n = V.n + (BC × Ω).n = V.n + (CB× n).Ω (5.18)

Now let us define ui,vi the unit vectors of the two joint axis of the U joint.
These vectors are the same for the base and platform. The angular velocity
of the leg ωl with respect to the base is

ωl = θ̇i
Aui + α̇i

Avi,

while the angular velocity of the platform ωp with respect to the leg is

ωp = θ̇i
Bui + α̇i

Bvi.

The angular velocity of the platform is

Ω = ωl + ωp = Ki
1ui + Ki

2vi,

where Ki
1,K

i
2 can be obtained from the previous equations. Now define

si = ui × vi, and compute the dot product of the right and left terms of
the previous equation by si:

si.Ω = 0 (5.19)

The twist W of the platform and the joint velocities vector Θ̇ may be
defined as

W = (vx, vy, vz,Ωx,Ωy,Ωz) Θ̇ = (ρ̇1, ρ̇2, ρ̇3, 0, 0, 0)
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Combining equations (5.18, 5.19) we get the full velocities equations as
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ̇1

ρ̇2

ρ̇3

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= J−1W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n1 (CB1 × n1)
n2 (CB2 × n2)
n3 (CB3 × n3)
0 s1
0 s2
0 s3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vx

vy

vz

Ωx

Ωy

Ωz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.20)

which establishes the full inverse kinematic jacobian.

5.2.2.3 Example: 3 − PUS rotational wrist
We consider the 3 degrees of freedom rotational wrist of type 3-PUS shown
in figure 2.11, and whose kinematics is presented in figure 5.1.

A

A2

B
C

l

z u

Figure 5.1. One of the links of a 3 degrees of freedom wrist in rotation

With the notation of figure 5.1, the velocity VB of point B and VA2 of
point A2 are:

VB = BC × Ω, VA2 = λ̇u

The length l of leg A2, B is constant and leads to

||A2B||2 = l2 (5.21)

Differentiating this equations gives

(VB − VA2).A2B = (BC × Ω− λ̇u),A2B = 0

Hence we get

λ̇ =
(CB ×A2B).Ω

u.A2B
(5.22)

which gives a row of the 3 × 3 inverse kinematic jacobian matrix. Let us
now calculate the full inverse kinematic jacobian matrix. The velocity VB
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of the B points is established in equation (5.17). Differentiating equation
(5.21) leads to

λ̇ =
A2B.V + (CB× A2B).Ω

u.A2B
(5.23)

If we define the joint velocities vector Θ̇ = (λ̇1, λ̇2, λ̇3, 0, 0, 0), equation
(5.23) leads to the first three rows of the full inverse kinematic jacobian:

J−1
i = ((

Ai
2Bi

ui.Ai
2Bi

(CB× A2B)
u.A2B

)) i ∈ [1, 3]

We now consider the ball-and-socket joint at C; that is equivalent to having
three R joints with axes meeting at C and whose unit vectors ni are linearly
independent. The constraint equation is V.ni = 0, so the three last rows of
the full inverse kinematic jacobian are

J−1
i = ((ni 0)) i ∈ [4, 6]

5.2.2.4 Example: 6−UPS manipulator
We consider the case of the 6−UPS robot, the inverse kinematics being
defined by equation (5.24):

ρ2 = ||AO||2 + ||CBr||2 + 2(AO + RCBr).OC + 2AO.RCBr + ||OC||2 .
(5.24)

By differentiating this equation we obtain

ρρ̇ = VC.AB + ĊB.AC , (5.25)

we have also
ĊB = BC × Ω . (5.26)

If ni denotes the unit vector of link i, we have

ni =
AB

||AB|| =
AB
ρ

. (5.27)

Using these results, we may write equation (5.25) as

ρ̇ = VC.ni + (BC × Ω).
AC
ρ

; (5.28)

this can be written as

ρ̇ = VC.ni + Ω.(
AC
ρ

× BC) = VC.ni + Ω.(ni × BC) . (5.29)
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One row of the inverse kinematic jacobian is therefore:

[ni , (ni × BiC)] . (5.30)

As mentioned previously, the inverse jacobian matrix is dependent upon
the choice of the operating point. We may for example attach the reference
frame to the end-effector, and choose O as operating point (542). In that
case a row of the inverse kinematic jacobian matrix may be defined as:

[ni , (ni × AiO)] . (5.31)

5.2.2.5 Example: 6−PUS manipulator
Using the inverse kinematics equations, we can write

ρ2
i = λ2

i − 2λiu.Ai0Bi + ||Ai0Bi||2 . (5.32)

Differentiating this equation, we obtain

λ̇iλi − λiu.VBi
− λ̇iu.Ai0Bi + Ai0Bi.VBi

= 0 , (5.33)

where VBi
represents the velocity of point Bi, which can be written as

VBi
= VC + BiC× Ω . (5.34)

Grouping the terms allows us to obtain

−λ̇iu.AiBi + AiBi.VC + (AiBi × BiC).Ω = 0 , (5.35)

which leads to

λ̇i =
AiBi

u.AiBi
.VC +

(AiBi × BiC)
u.AiBi

.Ω . (5.36)

5.2.3. INVERSE JACOBIAN AND PLÜCKER LINE COORDINATES

Let us consider a line going through points M1,M2, and define the 6-
dimensional Plücker vector P as

P = (M1M2,OM1 × M1M2)

This vector uniquely defines, up to a multiplicity factor, the line going
through M1,M2. The normalized Plücker vector Pn is defined as

Pn = (
M1M2

||M1M2||
,
OM1 × M1M2

||M1M2||
)
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Let us decompose P1 into two 3-dimensional vectors P1 = (p1,q1). A
necessary condition for P1 describing a line is that p1.q1 = 0. Consider
now another Plücker vector P2; an interesting property is that the line
associated with P2 intersects the line associated with P1 if and only if
p1.q2 + q1.p2 = 0. A property of Plücker vectors will be of interest: let us
define two arbitrary non zero vectors u,v; if Pv is defined as (p1,u×p1),
then Pv = (p1,v×p1) represents the same line Pu. We also note that the
components of a Plücker vector are not homogeneous in term of units.

If we now look at the full inverse kinematic jacobians established in
the previous example, we may see that all of them involve Plücker vectors.
More precisely, the Plücker vector of the link connecting the end-effector to
the remaining of the leg appears in all the inverse jacobians. We will see in
the next chapter that the presence of such vectors in the inverse jacobian
plays an important role in singularity analysis.

Hence we may wonder if such vector will appear in the inverse jacobian
of any parallel robot. In the general case this has not been formally proved
but it is easy to show that this will be true for a large class of spatial and
planar manipulators (215):

Theorem: for any spatial (planar) robot whose legs are attached to the
end-effector through a ball-and-socket joint (revolute), the inverse jacobian
will involve the Plücker vector of a line associated to the link connecting
the leg to the end-effector.

5.3. Jacobian matrix

Although the inverse jacobian established in the previous sections does not
have a very high complexity, the direct analytical determination of the
jacobian by inversion of J−1 will be difficult, even with the help of sym-
bolic computation, except in some particular cases (60)∗,(165). For planar
robots, this inversion is possible, and the jacobian matrix could even be ob-
tained directly by differentiation of the closure equations, as shown by Pen-
nock (469). However, this direct method seems difficult to apply to robots
having more than 3 d.o.f. Theoretical analytic formulations of jacobians
have been proposed (149; 312) but require complicated matrix inversions.

In the general case, the difficulty of the inversion does not lie in the
complexity of the algorithm but in the sheer size of the result. For example,
if we start with the calculation of the determinant of the inverse kinematic
jacobian matrix for a SSM, we will find that it involves 7488 multiplications,
998 additions and 26 power terms, and to determine J we will have to
perform the same calculation for the 36 minors. For the general 6−UPS
robot, even though Mayer St-Onge (391) showed that the computation of
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the inverse jacobian determinant is possible, its expression is very large. We
shall therefore not give any analytical formulation for jacobian matrices.

The general form of the determinant may be of interest for the singu-
larity analysis as we will see in the next chapter. For the SSM we have

|J−1| = Az3z
3
c + z2

c (Az2 + Ayz2yc + Axz2xc) + Ax2x
2
c + Ay2y

2
c + Ayzzcyc +

Axzxczc + Axyxcyc + Axyzxczcyc + Azzc + Ayyc + Axxc + Aψ,θ,φ

where the coefficients A only depend on the orientation. Even when we
can obtain an analytic expression of the jacobian matrices, a numerical
evaluation based on the symbolic expression will usually take a long time,
especially for 6 d.o.f. robots, and numerical precision will sometimes be
insufficient. Practically, the jacobian matrix will be obtained by relying
on a numerical inversion method that will be faster and, in general, less
sensitive to round-off errors.

5.4. Kinetostatic performance indices

5.4.1. MANIPULABILITY AND THE KINEMATICS POLYHEDRON

The inverse kinematic jacobian matrix also allows us to establish a linear
relation between the manipulator accuracy ∆X and the measurement errors
∆Θ on Θ. Clearly it is interesting to quantify the influence of the joint
measurement errors on the positioning errors of the end-effector, and this
is the purpose of the kinetostatic performance indices. In practice we may
assume that the measurement errors are bounded i.e. that they satisfy

||∆Θ|| ≤ 1 (5.37)

If we assume that the Euclidean norm is used in this equation, then

||∆Θ|| ≤ 1 ⇒ ∆XT J−T
k J−1

k ∆X ≤ 1 (5.38)

Equations (5.37, 5.38) establish that the hyper-sphere in the joint error
space is mapped into an ellipsoid in the generalized Cartesian error space;
this is often called the manipulability ellipsoid. It is usually admitted that
the shape and volume of this ellipsoid characterizes the manipulator dex-
terity. Indeed if the ellipsoid has an axis that is very large, then there will
be a large amplification factor between the errors in the actuated joint mea-
surements errors and the positioning error for the end-effector for a given
combination of sensor errors.

The validity of the concept of manipulability ellipsoid may be ques-
tioned. Indeed the use of the Euclidean norm in (5.37) implies that the
joints measurement errors are not independent. For example, if one of the
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joint measurement error is 1, then, by some mysterious influence, the other
measurement errors should all become simultaneously 0 . . .. A more realis-
tic norm will be the infinity norm, the maximal absolute value of the vector
components. This will indicate that the errors are independent, but that
their maximal absolute value is bounded, which corresponds to the real sit-
uation. With this norm, the joint errors are restricted to lie in a hyper-cube
in the joint error space. We get

−1 ≤
j=n∑
j=1

J−1
ij ∆Xj ≤ 1 i ∈ [1, n] (5.39)

Each of these inequalities defines a region in the positioning error space
that is bounded by two hyper-planes; the intersection of these regions is a
convex polyhedron that we will call the kinematic polyhedron. The hyper-
cube in the joint error space is thus mapped into the kinematic polyhedron
in the positioning errors space. This kinematic polyhedron will include the
manipulability ellipsoid, but is larger than this ellipsoid.

The kinematic polyhedron may easily be calculated by geometrical tech-
niques. The vertices of this polyhedron are the twists obtained by consid-
ering all combinations of extremal joint velocities; there are 2n such combi-
nations. An example is given for the INRIA left hand in figure 5.2, in which
we have assumed that 4 elements of the twist have a 0 value. Pierrot (477)
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Figure 5.2. Allowed velocities region (in gray) in the (vx, vy) plane for INRIA left hand
when it is in its nominal position.

addressed this problem for redundant robots. It must be noted that, apart
from being more realistic, the previous mapping leads to a geometrical ob-
ject that can be more easily manipulated than the ellipsoid. For example,
assume that one wants to determine what are all the possible end-effector
twists that can be obtained in 2 different poses of the end-effector. For
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that purpose we will have to calculate the intersection of the 2 kinematic
polyhedra obtained for the 2 poses, a well known problem of computational
geometry that can be more easily solved than computing the intersection
of 2 ellipsoids.

5.4.2. CONDITION NUMBER AND OTHER INDICES

5.4.2.1 Manipulability index and condition number
We will now formalize kinetostatic performance indices that allow us to
quantify the dexterity of a robot. Such indices have been defined since a
long time for serial robots as, for example, the Yoshikawa’s manipulability
index

√
|JJT|. As these indices are well known, we will focus on the condition

number that is often used for parallel robots. Consider the linear system:

AX = B

for a norm we have

||AX|| = ||B|| ≤ ||A||||X|| ||A−1∆B|| = ||∆X|| ≤ ||A−1||||∆B||

From which we get

||∆X||
||X|| ≤ ||A−1||||∆B||

||X|| ≤ ||A||||A−1||||∆B||
||B||

This equation indicates how a relative error in B gets multiplied, and leads
to a relative error in X. The error amplification factor, called the condition
number κ, is therefore defined as

κ(A) = ||A||||A−1|| .

For J−1
k , the condition number expresses how a relative error in Θ gets

multiplied and leads to a relative error in X. It characterizes in some sense
the dexterity of the robot, and will be used as a performance index. The
condition number is dependent on the choice of the matrix norm. The most
used norms are as follows:
− the 2-norm, defined as the square root of the largest eigenvalue of

matrix J−TJ−1: the condition number of J−1 is thus the square root of
the ratio between the largest and the smallest eigenvalues of J−TJ−1,

− the Euclidean (or Frobenius) norm defined for the m× n matrix A by
||A|| =

√∑i=m
i=1

∑j=n
j=1 |aij |2, or equivalently as

√
tr(ATA); if λi denotes

the eigenvalues of J−TJ−1, then the condition number is the ratio be-
tween

∑
λ2

i and
∏

λi. Note that sometime is used a weighted norm, in
which ATA is substituted by ATWA, where W is a weight matrix
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The smallest possible value of the condition number is 1. The inverse of
the condition number, which has a value in [0,1], is also often used; a value
of 0 indicates that the inverse jacobian matrix is singular. Note that it is
not possible to calculate an analytical form for the condition number as
long as the robot has more than 4 d.o.f. It is theoretically possible for a
robot with 3 or 4 d.o.f. by using the analytical formulation of the roots of
the characteristic polynomial, but these formulations are highly unstable
numerically. Therefore, in practice, it is in general better to use classical
linear algebra software that offer a robust condition number calculation.

But there is major drawback to the condition number. For a robot
having at least one translational and one rotational d.o.f., the inverse ja-
cobian will be heterogeneous as far as units are concerned. For instance,
for a 6−UPS robot, the elements of the matrix corresponding to transla-
tions are dimensionless, whereas those corresponding to the rotations are
lengths. A direct consequence is that the condition number has no clear
physical meaning, as the rotations are transformed arbitrarily into ”equiv-
alent” translations. Hence one has to be quite careful when using such an
index as an optimality criteria for a parallel robot.

Various proposals have been made to avoid this drawback. Researchers
such as Ma and Angeles (380) suggested dividing the rotational elements by
a length, called the characteristic length, such as the length of the links in
a nominal position, or the natural length, defined as that which minimizes
the condition number for a given pose. Still the choice of the length remains
arbitrary as it just allows us to define a correspondence between a rotation
and a translation. As mentioned by Park (467), ”this arbitrariness is an
unavoidable consequence of the geometry of SE(3)” (see also (548) for a
thorough discussion on the validity of manipulability indices). Angeles (13)
recognizes that point: he shows that the error when approximating a rigid-
body displacement by a rotation in a four-dimensional space, the translation
being normalized by the characteristic length, is monotonically decreasing
with the characteristic length, and hence no minimum value of the error
may be found.

Gosselin (191) defines a new inverse jacobian that transforms the linear
velocities of two points on the end-effector into actuator velocities. Later
on Kim (318), proposes using for a 6−UPS robot, the inverse jacobian
obtained from the inverse kinematics equations based on the coordinates
of 3 points of the end-effector (see section 4.6.1.2). In that case the inverse
kinematics consists of 9 equations, but only 6 involve the joint variables.
These equations are used to derive a 6 × 9 inverse jacobian J−1, whose
rank is usually 6. Although this inverse jacobian matrix is homogeneous in
terms of units, the condition number will no longer describe the intrinsic
behavior of the robot as its value will depend on the choice of points on
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the end-effector.
It is also mentioned sometimes that two condition numbers should be

computed to avoid the unit discrepancy: one for the restriction of the jaco-
bian to the translation motion of the end-effector, and one for its restriction
to the orientations. The experimental data presented in the next section
seems to indicate that this is not always a valid approach.

As far as control is concerned, it is better to have a condition number
for J−1 that is as small as possible. This ensures that the errors on the
actuated joints affect the moving platform position as little as possible.
Note however that the condition number indicates a bound on the relative
error and not the largest positioning error. For example a cartesian X-Y
table robot has the identity as inverse jacobian matrix, with 1 as condition
number, but the largest positioning error is

√
2.

5.4.2.2 Validity of the condition number
The condition number is mentioned in the literature as the main index for
characterizing the accuracy of parallel robots. We will show on a simple
example that such statement may be questioned.

Consider the 6−UPS robot whose geometry is defined by the coordi-
nates of the attachment point presented in table 5.1, and which are close
to the INRIA left hand.

joint xa ya za xb yb zb

1 -12.758 3.902 0.0 -7.8218 -1.052 0.0

2 -9.758 9.098 0.0 -3 7.3 0.0

3 -3 -13 0.0 -4.8218 -6.248 0.0

4 3 -13 0.0 4.8218 -6.248 0.0

5 9.758 9.098 0.0 3 7.3 0.0

6 12.758 3.902 0.0 7.8218 -1.052 0

TABLE 5.1. Coordinates of the attachment points in cm.

We consider three poses of this robot, defined by P1=xc = yc = 0, zc=53
cm, ψ = 0, θ = 0, φ = 0, P2=xc = yc = 0, zc=53 cm, ψ = 30◦, θ = 0, φ = 0;
and P3=xc = yc = 10, zc=53 cm, ψ = 0, θ = 0, φ = 0. The accuracy of the
robot at these poses is characterized by the maximal errors ∆Xx,y,z,θx,θy,θz

obtained as the sum of the absolute values of the corresponding rows of
Jk, multiplied by a nominal sensor accuracy (chosen here as ± 1/100 mm).
These values are presented in table 5.2; it can be seen that the positioning
errors are significantly larger for P2 and P3 compared to P1. As for P3, the
errors are usually large compared to P2, except for the rotation around z.
A reasonable ranking in term of accuracy is therefore P1 >> P2 > P3.
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Pose ∆Xx ∆Xy ∆Xz ∆Xθx ∆Xθy ∆Xθz

P1 0.1184 0.1268 0.010087 0.1185 0.1184 0.697

P2 0.1189 0.1274 0.01266 0.1333 0.1429 0.808

P3 0.123 0.1309 0.0372 0.15 0.1663 0.7208

TABLE 5.2. Maximal positioning errors at P1, P2, P3 (mm and rad).

For this robot, we define the normalized inverse jacobian matrix J−1
n ob-

tained by dividing the orientation components of the J−1
k by 53 i.e. roughly

the legs lengths at pose P1. We will now examine the values of various
kinetostatic indices at the 3 poses. The considered indices will be:
− Cd: the determinant of J−1

k

− C2, C
n
2 : the 2-norm condition number of J−1

k , J−1
n

− CF , Cn
F : the Frobenius-norm condition number of J−1

k , J−1
n

− C3
2 , C3

F : the 2-norm and Frobenius norm condition number of the in-
verse jacobian matrix obtained when the inverse kinematics equations
are based on the coordinates of 3 points of the end-effector. The chosen
points will be all possible triplets in the set Bi: hence we will provide
ranges for these indices.

− Mt,Mo: the manipulability index of the restriction of Jk to its trans-
lation, orientation parts (387)

For all indices we expect to have an absolute value that is maximum for
P1 and is larger for P2 than for P3 and their values are presented in ta-
ble 5.3, the values of Mt,Mo being (12.65, 0.004266), (20.45, 0.00754),
(13.99, 0.00471) for P1, P2, P3.

Cd C2 Cn
2 CF Cn

F C3
2 C3

F

P1 -29.219 75.14 63.927 152.84 70.167 [9.55,55.472] [258.85,3204.91]

P2 -24.644 75.162 73.847 154.048 80.938 [9.619,43.837] [218.8,2383.58]

P3 -23.928 80.646 68.42 158.3 74.70 [10.065,58.95] [286.46,3617.96]

TABLE 5.3. Performance indices for the poses P1, P2, P3

We may deduce interesting results from these values:
− Cd: this index is coherent with the maximal positioning errors
− C2: it may be seen that the difference is surprisingly very small between

P1, P2 and significant between P3, P2. This is not what we may expect
from an accuracy index
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− Cn
2 : the accuracy ordering between P2, P3 is not respected

− CF : the accuracy ordering is respected, but the change between P1 and
P2 is relatively small

− Cn
F : the accuracy ordering between P2, P3 is not respected

− C3
2 , C3

F : for P3 the condition number is either very close to the one of P1

(C3
2 ) or always larger. On the contrary, for P2, the condition number

is in general significantly smaller than the condition number for P1,
and sometime very close, but in all cases smaller, than the condition
number for P3. This completely disqualifies these condition numbers
as accuracy indices

− Mt,Mo: the manipulability indices of P1, P3 are close, while that for
P2 is significantly larger. These indices behave oppositely to what was
expected and may be disqualified

Hence apart from the manipulability, none of these indices exhibits a
consistent behavior with respect to the positioning errors of this robot. We
cannot derive a general law from this single example, but it shows clearly
that kinetostatic indices based on the kinematic jacobian have to be used
with some precaution, especially when addressing optimal design for robots.

5.4.2.3 Isotropy
Poses with a condition number of 1 are called isotropic poses, and robots
having only such type of poses (e.g. the X-Y table) are called isotropic
robots. Designing a parallel robot that is isotropic in one pose or is isotropic
over its full workspace is often considered as a design objective (11; 27; 73;
160; 584; 619).

The isotropy denomination is somewhat improper as, stricto sensu, it
implies that the largest magnitude of the positioning errors will be the same
for any extremal joint errors, which is not true. For example for the X-Y ta-
ble, the largest positioning error has a value that varies in the range [1,

√
2].

It is even worse for redundant robots: for example Krut (334) exhibits a
robot that is mechanically similar to a X-Y table but whose condition num-
ber, although constant, is not 1.

Still, isotropic configurations have an interest as they exhibit the most
regular behavior of the positioning errors with respect to the joint errors.
Hence, instead of using the name isotropic robot we may consider using the
name maximally regular robot.

5.4.2.4 Global conditioning indices
Kinetostatic indices are, in general, dependent on the pose. Instead of con-
sidering the index I in a specific pose, we may introduce a global condition-
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ing index ν over the manipulator workspace W by

ν =
∫
W I dW∫
W dW

.

as proposed by Gosselin (186) for the condition number. The global con-
ditioning index for the condition number, GCI, is often mentioned by au-
thors as a criterion that can be used for optimal design. A major problem
is the calculation of the GCI, as it is almost never possible to calculate
it exactly. It is indeed well known that the numerical evaluation of such a
multi-dimensional integral is difficult. In our case, most authors just sample
the workspace and average the values of the condition number obtained at
the sampling poses, although this method does not allow us to determine
an error bound on the result. It is sometimes assumed that if the result
with m1 sampling points is close to the result obtained with m2 points,
m2 being significantly larger than m1, then the later result is a good ap-
proximation to ν. This assumption may be true if the condition number is
smooth enough, a claim that is difficult to support (see exercise 5.8 for a
simple counter-example).

Usual integration methods requires, for reaching a given level of accu-
racy, a number n of evaluations that grows exponentially with the space
dimension. Hence a better evaluation will probably be obtained by using
Monte-Carlo integration (with an error that decreases as 1/

√
n). A certified

evaluation of the global conditioning index is therefore an open problem but
nevertheless the GCI calculation will probably be computer intensive.

Another global conditioning index is the uniformity of manipulability
defined as the ratio of the minimum and maximum values of the manipu-
lability index over a given workspace (474). It suffers from the same calcu-
lation problems as the GCI.

5.4.2.5 Other accuracy indices
At a given pose, and for a unit joint measurement error, the maximal po-
sitioning error (MPE) for the end-effector is obtained by taking the sum of
the absolute values of the corresponding row of the jacobian. Apart from
the condition number, it may be thought that a good kinetostatic perfor-
mance index for a robot will be the largest MPE over a given workspace. A
theoretical solution to this optimization problem is quite difficult as usually
an analytical formulation of the jacobian matrix is not available. To obtain
the largest MPE, researchers have proposed the same method as for com-
puting the GCI, i.e. a sampling of the workspace. For instance Clavel (100)
uses this approach for the Delta robot, and Patel (468) for the 6−UPS
robot. But the approach is computer intensive and does not allow a robust
calculation of the maximum, as it does not provide an error bound on the



VELOCITY, ACCURACY AND ACCELERATION ANALYSIS 171

result. We have recently proposed an algorithm based on interval analy-
sis that is still computer intensive, but which allows one to calculate this
maximum up to a pre-defined accuracy (418).

But computing the largest MPE over a given workspace is not sufficient
for comparing two robots. Clearly, calculating the average and variance of
the MPE over the workspace will be of interest, but unfortunately there is
no known algorithm to compute them.

The above definitions of the kinetostatic indices do not take into account
other factor affecting the accuracy of parallel robots, such as uncertainties
in the location of the attachment points, or clearance and friction in the
joints, an issue that is addressed in section 5.8.

5.5. Determination of the joint velocities and twist

The purpose of this section is to describe numerical procedures for calculat-
ing the actuated joint (generalized) velocities, being given the generalized
(actuated joint) velocities.

5.5.1. DETERMINATION OF THE JOINT VELOCITIES

In the previous section, we showed that it is usually possible to determine
analytically the inverse kinematic jacobian matrix that linearly relates the
actuated joint velocities Θ̇a to the twist W of the end-effector as:

Θ̇a = J−1
k W (5.40)

This equation allows one to compute the actuated joint velocities directly.

5.5.2. DETERMINATION OF THE TWIST

In a previous section we showed that it is usually difficult, even for robots
with less than 6 d.o.f. robots, to invert J−1

k analytically: a numerical pro-
cedure will therefore generally be used to calculate the twist from the joint
velocities. For a given pose of the end-effector, we may, for example, use a
numerical inversion algorithm to determine the jacobian from its inverse,
or a linear equations solver to get W from (5.40). Reboulet (499) suggests
using the quasi-Newton scheme (see section 4.6.1):

Wk+1 = Wk + J0(Θ̇a − J−1Wk) . (5.41)

where J0 denotes the kinematic jacobian matrix calculated for a given pose.
The algorithm stops when the differences between the joint velocities and
those that are calculated from the twist are lower than a fixed threshold.

Convergence and robustness of such a scheme have been discussed in
section (4.6.1). Reboulet actually shows that it is convergent in all the
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workspace of the robot he uses, and we have observed the same phenomenon
for the robot defined in table 5.1. Numerical tests have shown that this
algorithm is fast; on a DELL D400, 1.2 GHz, convergence occurs after 1 to
2 iterations, which leads to a computation time of about 0.11 ms, while it is
established at 0.2 ms for a linear solver, and 0.4 ms for a matrix inversion.

5.6. Extrema of the velocities in a workspace

When designing a robot it may be interesting to determine what are the
extrema of the end-effector twist velocities for fixed values of the extrema of
the actuated joint velocities. We consider a n d.o.f. robot and suppose that
the actuated joint velocities are bounded for all links, and that the bounds
are the same for all joints. As the relations between the joint velocities and
the twist are linear we may assume, without loss of generality, that

|Θ̇i| ≤ 1 , ∀ i ∈ [1, n] . (5.42)

5.6.1. EXTREMA OF THE TWIST

At a given pose, we define the full independent velocity (FIV) Ẋi as

Ẋi =
j=n∑
j=1

|Jkij
|

For design purposes, it may be interesting to determine what are the max-
imal and minimal FIV Ẋi

M
, Ẋi

m
for all poses over a given workspace. For

example the minimal FIV may be used to determine what should be the
minimal actuator velocity so that the end-effector is able to reach a given
velocity around/along a given axis for any pose. Note also that the maximal
FIV allows one to determine the largest positioning error of the end-effector.

Such minimax optimization problems are in general difficult, but are
more so for parallel robots, because the kinematic jacobian is usually not
available. However we have proposed in a recently published paper (418) an
interval analysis-based algorithm that allows for the calculation of Ẋi

m
, Ẋi

M

up to a given accuracy over almost any arbitrary workspace. This procedure
is based on the possibility of computing an enclosure of all solutions in Ẋ
of the interval linear systems Θ̇a = J−1

fk Ẋ where J−1
fk is an interval matrix

(see the interval appendix). Still, this algorithm is computer intensive, and
calculating efficiently Ẋi

m
, Ẋi

M
is an open problem.

For parallel robots, we may also consider the maximal translational/angular
velocity Vmax at a given pose as the Euclidean norm of the corresponding
components of the end-effector’s twist. Determining the minimal and max-
imal values V m

max, V M
max of Vmax for all poses in a given workspace is also
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interesting for design purposes. It may be shown that if Jt is the restric-
tion of the kinematic jacobian to its translation/rotation part, then V 2

max is
bounded by the sum of the squares of the singular values of Jt, multiplied
by n (see exercise 5.9).

We have proposed in (409) an algorithm for a 6−UPS robot that deter-
mines V m

max, V M
max along a given direction for any pose within a translation

workspace (i.e. the orientation of the end-effector is supposed to be con-
stant). By-products of this algorithm are the extremal values of the angle
between the link and a fixed direction, and therefore the maximal motion of
the passive joints when C describes its workspace. But solving the general
case is still an open problem.

5.6.2. EXTREMA OF THE JOINT VELOCITIES

We may be interested in determining what should be the minimal joint ve-
locities so that a minimal translation/angular velocity V of the end-effector
may be reached for any pose within a given workspace. This problem is ba-
sically equivalent to determining V m

max and then scaling the joint velocities
by the factor V m

max, and is thus an open issue.
We have proposed in (408) an algorithm that allows one to compute the

minimal value of the joint velocities for a 6−UPS robot so that a given
translational velocity along a fixed direction may be obtained for any pose
within a translation workspace.

5.7. Accelerations analysis

We will now determine what are the relations between the joint accelera-
tions and the cartesian and angular accelerations of the end-effector. We
note that parallel robots may present excellent characteristics as to accel-
eration: the Delta robot, for example, presents a maximal acceleration of
about 500 m/s2. General methods exist to obtain accelerations for closed-
loop mechanisms (441) although for parallel robots it is generally easy to
obtain these relations directly. Indeed, from equation (5.40) we obtain by
differentiation

Θ̈ = J−1
k Ẇ + ˙J−1

k W . (5.43)

For the various categories of parallel manipulators, the determination of the
acceleration equations thus amounts to the determination of the derivative
of the inverse kinematic jacobian matrix; the problem is more complex for
redundant robots, see (453; 648). We will present some examples in the
next sections.
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5.7.1. 6−UPS ROBOT

In this case, one row of the inverse kinematic jacobian matrix is[
AB
ρ

,
(CB × AB)

ρ

]
. (5.44)

We first consider the first 3 elements of this row. We have

d
(

AB
ρ

)
dt

=
1
ρ2

(ρȦB − ρ̇AB) , (5.45)

with
ȦB = V + CB× Ω (5.46)

which allows us to complete the differentiation of these elements. For the
last three elements, we have

d
(

CB×AB
ρ

)
dt

=
ρd(CB×AB)

dt − ρ̇(CB× AB)
ρ2

. (5.47)

Moreover, we have

d(CB ×AB)
dt

= ĊB ×AB + CB× ȦB , (5.48)

and
ĊB = CB× Ω ; (5.49)

thus:
d(CB× AB)

dt
= (CB × Ω) × AB + CB× V . (5.50)

One row of the derivative of the inverse kinematic jacobian matrix is thus:

[ρ(V + CB× Ω) − ρ̇AB, ρ((CB × Ω) × AB + CB× V) − ρ̇(CB× AB)]
ρ2

(5.51)
We have considered here the inverse kinematics jacobian but we could con-
sider as well another inverse jacobian. Simaan proves that there is an inverse
jacobian whose derivative consists of Plücker coordinates of a line (542).

5.7.2. 6−PUS ROBOT

For this type of manipulator, the lengths of the links are fixed and the
linear actuator moves the point Ai along a constant direction u. In this
case, one row of the inverse jacobian matrix is[

AB
AB.u

,
(CB× AB)

AB.u

]
. (5.52)
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We have:
d
(

AB
AB.u

)
dt

=
ȦB(AB.u) −ABd(AB.u)

dt

(AB.u)2
(5.53)

The previous differentiation is entirely determined by using the following
relations:

d(AB.u)
dt

= ȦB.u , (5.54)

ȦB = V + CB× Ω . (5.55)

For the last three elements of the row, we have

d
(

CB×AB
AB.u

)
dt

=
(AB.u)d(CB×AB)

dt − d(AB.u)
dt (CB× AB)

(AB.u)2
. (5.56)

Using equations (5.54) and (5.50) we may conclude the differentiation of
the row.

5.8. Accuracy analysis

Sources of positioning errors for parallel robots are diverse, and we will now
mention the main one.

5.8.1. GEOMETRICAL ERRORS

For 6−UPS robots, Masory (386)∗ has studied the influence of not only
the sensor errors but also the manufacturing tolerances on the locations of
the joints centers. A thorough analysis has been proposed by Ehmann and
co-workers (468; 606); this includes location errors of A,B, error in the leg
lengths, and imperfect motion of the ball joints. Ehmann proposes a first
and a second order error analysis, but shows that the first order is suffi-
cient, although the differences between these two models increase when the
robots become smaller. A software package written in Mathematica allows
one to determine, for a given orientation of the platform, the workspace
regions where the error is larger than a given threshold, to depict the error
distribution in planar cross sections, and to perform a sensitivity analy-
sis. Ehmann models are used by Jelenkovic (283) for an error analysis of
6−UPS and 6−PUS robots that is available on-line as a Web service� AWE .
Tischler (579) proposed a numerical approach for determining the influ-

ence of the backlash of the joints. The sensitivity to manufacturing toler-
ances of the 3-UPU robot has also been investigated in depth (212; 463;
626), while Parenti (465) and Wohlhart (623) propose an analysis of the ef-
fect of joint clearances on trajectories followed by serial and parallel robots.
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A general approach to evaluating the positioning errors in one pose has
been proposed by Pott (484). It relies however on a numerical evaluation
that requires solving the direct kinematics, and is thus computer intensive.
According to these works, it is impossible to indicate trends for the influ-
ence of the geometrical errors: a case by case study has to performed, as
this influence will be highly dependent upon the mechanical architecture,
dimensioning and workspace of the robot

5.8.2. THERMAL ERRORS

Thermal effects may play a role in the positioning accuracy of fine position-
ing robots. For example Clavel (102) and Niaritsiry (449)∗ mentions that
a 0.01 ◦C regulated temperature is necessary to obtain nanometer accu-
rate motions. For heavy duty robots, thermal effects are sometime men-
tioned as possible source of inaccuracy, although few works substantiate
this claim (582). Sellgren (530) proposes using thermal sensors to correct
this effect, and poses the location of these sensors as a design problem.
Pritschow (489), however, states that cooling is the most effective measure,
as the thermal model of parallel robots is complex. Sellgren (530) shows
that for a 6−UPS robot, internal cooling may reduce the error in the leg
lengths by 50 %.

5.8.3. GRAVITY INDUCED ERRORS

For micro-robots, Niaritsiry (449)∗ mentions that the deformation due to
gravity may be significant and close to errors due to geometrical errors for
a small workspace. For machine-tools, Pritschow (489) mentions also that
gravity induces deformation in the machine kinematics. He also notes that
this effect is almost constant for serial machines over the workspace, but
that this is not the case for parallel robots. On the other hand, he notes
that even simple flexible models leads to very good improvement, provided
that the stiffnesses of the components have been measured beforehand.

5.8.4. DYNAMICS ERRORS

Pritschow (489) notes that, for high-speed machining, the dynamic errors
have a much stronger impact than the static errors. It may be believed that
this will also be the case for very fast parallel robots. Pritschow identifies
elastic deformations, natural vibrations and drive errors as potential sources
of positioning errors.
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5.8.5. WORST POSES FOR ACCURACY

Another aspect of accuracy analysis will be to be able to locate a priori,
even roughly, the poses with the worst positioning accuracy, so that the
computation time of the accuracy analysis will be reduced. According to
Hay (222), who relies on numerical calculation, for planar robots the worst
values of the condition number are obtained for poses on the boundary of
the workspace. Open problems are to determine if this also true for the
worst positioning errors, and if this is true for spatial robots also.

5.9. Exercises

Exercise 5.1: We consider a 3−RRR planar robot with

OA1(0, 0) OA2(5, 0) OA3(2, 0) CB1(0, 0) CB2(0, 0) CB3(1, 0)

All the lengths of the links are equal to 5. We denote the joint velocities
vector by Θ̇. Let x, y be the coordinates of B1 in the reference frame, θ be
the angle between B1B2 and the x axis, and W = (ẋ, ẏ, θ̇). Determine the
matrices A,B so that AΘ̇ + BW = 0
Exercise 5.2: Determine the full inverse kinematic jacobian of the planar
3 − RRR robot
Exercise 5.3: Determine the full inverse kinematic jacobian of the robot
presented in figure 2.44
Exercise 5.4: Calculate the inverse kinematic jacobian matrix of a SSM
and its determinant, when the base and platform are regular hexagons and
when the centers of the hexagons are placed along the z axis.
Exercise 5.5: Calculate the H matrix of equation (5.4) for a spatial parallel
robot having a planar platform when the pose of the robot is defined by
the coordinates of its points B1, B2, B3

Exercise 5.6: Prove the theorem presented in page 162
Exercise 5.7: Show that the manipulability ellipsoid is included in the
kinematics polyhedron
Exercise 5.8: Consider a serial 2R robot with link length equal to 10.
Prove that the 2-norm condition number κ(θ2) of this robot is a function
only of the second joint angle θ2. Then compute the global conditioning
index GCI of the robot when this angle varies between 0 and 2π by using
a numerical method. Let w(n) be

w(n) = (
j=n−1∑

j=0

1/κ(2jπ/(n − 1)))/(2nπ)

Clearly w(n) is equal to the GCI when n goes to infinity. It is assumed that
w(n + 10) is a good approximation of the GCI for n such that 100(w(n +
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10)−w(n))/w(n+10) is lower than 0.5. Starting from n = 10, the sampling
size is increased by 10 until the above condition is satisfied. Determine the
value n1 of n at which this situation occurs. Determine the relative error
between the GCI and w(n1).
Exercise 5.9: Shows that for a n d.o.f. parallel robot, the square of the
maximal translational velocity is equal to the sum of the squares of the
singular values of Jt, multiplied by n, where Jt is the restriction of Jk to the
translation components
Exercise 5.10: For 6−PUS robot, the lengths of the links are fixed,
and the actuation is done by moving point Ai along a constant direction
defined by the vector u. Show how we can calculate the extrema of the joint
velocities that are needed for the execution of a given twist, when C moves
along a line segment, and the orientation is constant.
Exercise 5.11: Determine the needed extrema of the acceleration of the
actuators so that a 6−UPS robot starting with a zero velocity reaches a
fixed acceleration in a given direction, for any pose in a given workspace.
Problem 5.1: Determine exactly the extrema of the joint velocities of a
6−UPS robot for a given twist when C lies in a cartesian box.
Problem 5.2: Determine the extremal velocity in a given direction that
a 6−UPS robot may reach when the amplitudes of its joint velocities are
bounded by ±1. Determine the pose for which this extremal velocity may
be reached.
Problem 5.3: Determine the absolute extremal velocity that a 6−UPS
robot may reach in a given workspace, when the amplitudes of its joint
velocities are bounded by ±1. Determine the poses where this extremal
velocity is reached.
Problem 5.4: Find a method for calculating the extrema of the sum
of the absolute values of the row components of a jacobian for all the
configurations of the moving platform within a given workspace.
Problem 5.5: Under what conditions on the geometry of a robot and on
a desired workspace will the largest maximal positioning errors be obtained
for a pose on the border of the workspace ?
Problem 5.6: Is there an explicit relation between the coordinates of the
base and the moving platform joint centers of a parallel robot which will
ensure that it will be isotropic at a given configuration?
Problem 5.7: Determine the extremal acceleration in a given direction
that a 6-UPS robot may reach in a given pose, when the magnitudes of
the joint velocities and accelerations are bounded by ±1.
Problem 5.8: Consider the previous problem and find the extrema of
the acceleration for any position within a given workspace.
Problem 5.9: Determine a priori (i.e. just by looking at the geometry
of the robot) regions that contains the poses with the worst positioning
accuracies.
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Singular configurations

This chapter introduces the notion of singular configurations. Singular con-
figurations are particular poses of the end-effector, for which parallel robots
lose their inherent infinite rigidity, and in which the end-effector will have
uncontrollable degrees of freedom. We will explain why such poses should
generally be avoided, and how these configurations may be characterized.
We will then describe a geometric method that allows us to systematically
determine the conditions for singularity, and obtain analytical relations
between the parameters of the end-effector pose, corresponding to the dif-
ferent singularity cases. We will introduce indices that indicate how close a
pose is from a singularity, and we present practical methods for determining
whether a singular configuration exists within a given workspace.

6.1. Introduction

We consider a non-redundant n d.o.f. parallel robot having n actuated
joints for a total of N joints. The motion of the end-effector is described by
a set of parameters X, while the joint motion are described by Θ, which
includes the passive and active joint parameters Θp,Θa. We have seen that
the kinematic equations may be written as:

F (X,Θ) = 0 , (6.1)

which is a set of N equations in N + n unknowns. A kinematic singularity
will exist when there are less than N independent equations in (6.1), or
equivalently when the Jacobian matrix of the system has a rank less than
N . Determining such equation dependency at first glance is not trivial: see
for example the singularity analysis of Husty for a patented robot (257). We
will now examine what are the consequences of such kinematic singularity
on the behavior of the robot.

6.2. Singularity influence and classification

6.2.1. SINGULARITIES AND VELOCITIES

An initial study of singularity was presented by Gosselin and Angeles (189)
who use a restriction of (6.1) to the active joints Θa and to the parameter
vector Xn that describes the n desired end-effector motion. The full twist

179
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W of the end-effector is decomposed into Wn,We where Wn corresponds
to the velocities of the n d.o.f. of the robot, and We is the complement
of Wn with respect to W. By differentiation Gosselin and Angeles obtain
a relation between the actuated joint velocities Θ̇a and the n-dimensional
twist Wn of the following type:

AΘ̇a + BWn = 0 .

They then distinguish 3 different types of kinematic singularity:
− A is singular (called type 1 or serial singularity): there will be a non-

zero velocity vector Θ̇a for which the platform does not move.
− B is singular (called type 2 or parallel singularity): there will then be

a non-zero twist Wn for which the joint velocities are zero. In the
neighborhood of such a configuration, the robot will be able to have
an infinitesimal motion while the actuators are locked (as in this case
the mobility of the end-effector should be 0 it is said that the robot
gains some d.o.f.). As a consequence, certain degrees of freedom of the
end-effector cannot be controlled, and this is a major problem. The
poses satisfying this condition will be called singular configurations
or singularities, and will be the main study of this chapter. Clearly,
for a given mechanism, such a singularity depends on the actuation
scheme (388)

− both A and B are singular (type 3 singularity): the end-effector may be
moved while the actuators are locked, and vice versa.

A more general study was proposed by Zlatanov (663)∗ and we will follow
his lead. Our definition of kinematic singularity corresponds to his increased
instantaneous mobility (IIM) singularity (also called an uncertain config-
uration by Hunt (248)). In the ”Velocity” chapter we establish that the
relations between the passive and active joint velocities and the full twist
W of the end-effector may be written as:

AΘ̇a + BW + CΘ̇p = 0 . (6.2)

This relation is used to solve the forward instantaneous kinematic problem
(FIKP) , determining W and Θp as functions of the active joint velocities
Θa, and the inverse instantaneous kinematic problem (IIKP) , determining
Θp, Θa as functions of the twist W. Equation (6.2) may be written as

L(Θ̇a, Θ̇p,W)T = 0 (6.3)

where L is a N×(N +n) matrix. The following singularities may be defined:
− redundant input singularity (RI): a zero twist of the end-effector is

obtained for non-zero actuated joint velocities. In that case the IIKP
is not solvable; this corresponds to Gosselin’s type 1 singularity.
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− redundant output singularity (RO): a non-zero twist W of the end-
effector may be obtained although the actuators are locked and the
FIKP is not solvable. This type of singularity covers Gosselin’s type
2 singularity (if W is such that Wn �= 0), but is broader, because
W may be such that Wn = 0,We �= 0, a case which cannot be ob-
served if we are looking only at input-output velocities equations; this
has been coined constraint singularity by Bonev and Zlatanov (48;
666)∗. Some authors distinguish a special case of constraint singulari-
ties where the motions of the end-effector are finite. Such singularities
are called architectural singularities, and lead to a so-called self-motion
robot. We will devote section 6.8 to this type of robot.

− redundant passive motion singularity (RPM): non-zero passive joint
velocities may be observed although the actuators are locked and the
twist of the end-effector is 0. This singularity is called actuator singu-
larity by Han and Park (212). Such a situation may occur, for example,
for a Gough platform if S joints are used at both extremities of the leg;
a rotation of the leg around the line joining the centers of the two S
joints will in theory produce no velocity of the end-effector. In practice
however this will not be true as the joints will not be perfect, and such
a configuration should be avoided.

An even finer distinction addressing second order singularity is presented by
Liu (369) and Wohlhart (623), but it is difficult to put in practice. A n-order
singularity corresponds to the case where the n-th order time derivative
of the singularity motion is not 0, while the first to n-th time derivative
of the actuated joints variables are 0 (our definition of singularity hence
corresponds to a first order singularity). As the inverse kinematic equations
describe a variety of finite order, there is a finite value of n such that if all
the n time derivative are not 0, then the mechanism will exhibit a finite
singular motion and will become permanently singular (see section 6.8).

Note that other singularities may be defined. For example Chen (88)
presents a control singularity that occurs when a single motor actuates
two joints. A relation similar to (6.2), in which the joint velocities Θ̇a are
replaced by the motor velocities u, may be written, and the singular cases
of this relation have to be studied. For parallel wire robots, it is possible
to define a singularity as a pose at which tension in a wire vanishes.

6.2.2. SINGULARITIES AND STATICS

It is possible to introduce singularities by studying the mechanical equi-
librium of a parallel robot, as we will do more thoroughly in the ”Statics”
chapter. We denote by τ the forces/torques exerted by the legs on the end-
effector. The vector τ includes the force/torque provided by the actuated
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joints and possibly force/torque exerted by some passive joints. If a wrench
F is applied on the moving platform, the mechanical system will be in equi-
librium if the resultant of the joint forces which act on the platform is the
opposite to F . If this is not the case, the end-effector will move until an
equilibrium position is reached. We know, however, that in an equilibrium
position there is a relation between τ and F :

F = J−T
fk τ , (6.4)

where J−T
fk is the transpose of the full inverse kinematic jacobian. This

equation describes a linear system in terms of the components of τ ; it
will generally admit a unique solution for a given F , except when matrix
J−1
fk is singular: then the linear system will not have a unique solution

and the mechanical system cannot be in equilibrium. Another practical
consequence is that in the neighborhood of a singular configuration, the
joint forces may become quite large since they are expressed as a quotient
in which the denominator is the determinant of J−1

fk . There is therefore a
significant risk of breakdown of the mechanism; it is therefore important to
be able to find such singular configurations. Note that the inverse kinematic
jacobian involves only the actuated joints (and possibly forces/torques in
some passive joints). A more general singularity analysis in view of detecting
infinite forces/torques in the joints should involve all possible joints.

6.2.3. SINGULARITIES AND KINEMATICS

Another way to introduce singular configurations is to study the unique-
ness of the solution to the direct kinematics around a given solution. The
actuated joint variables being fixed, the inverse kinematic equations may
be written as:

F(X) = 0 (6.5)

If X0 is a solution of this system, then the rank theorem states that there
is only one solution in the neighborhood of X0 if the jacobian of the sys-
tem is nonsingular, otherwise multiple solutions are obtained, and although
the actuated joints are locked the platform may be infinitesimally mov-
able. Singularities are related to the study of the kinematic branches. For
a given set of actuated joint variables Θ0

a, the system (6.5) admits a given
finite set of m solution X1, . . . ,Xm. If the actuated joint variables vary
continuously from Θ0

a to another set Θ1
a, then the solutions of (6.5) vary

continuously: the poses of the end-effector follow different trajectories, the
kinematic branches. A singularity will occur if two branches collapse, or
if a branch goes to infinity. Note that such singularity does not cover the
constraint singularities.
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6.2.4. SERIAL SINGULARITY

In a serial singularity, a zero twist of the end-effector is obtained for non-
zero actuated joint velocities. It has been often claimed that such a singu-
larity corresponds to a ”workspace limit”. But such a statement has never
been fully explained and therefore it is necessary to clarify this point.

For a robot having revolute joints between the attachment points A,B
of the legs it is possible to show that if a pose is on the boundary of
the workspace, then we have a serial singularity, but the converse is not
true. Indeed a counter-example has been proposed by Bonev (51) with the
3−PRP planar robot. A serial singularity is obtained when the axes of
the two P joints in a chain are aligned. In that case, a pair of equal and
opposite velocities of the prismatic joints leads to a zero velocity for the
chain extremity, whatever its location, and thus even for poses of the end-
effector that are inside the workspace of the robot.

But it is possible to have a pose on the boundary of the workspace with-
out there being a serial singularity. For example the A matrix for a 6−UPS
robot is a diagonal matrix with the leg lengths as elements. Assuming that
the leg lengths are not zero, A is never singular, although the robot has a
workspace boundary due to the limited stroke of the actuators.

The definition of serial singularity makes it sensitive to the form of the
kinematic equations. For instance, for a 6−UPS robot, a diagonal A matrix
(whose determinant may be 0) appears when using the square of the leg
lengths to form the kinematic equations, but will be replaced by the non-
singular identity matrix if we use the square root of the leg lengths to form
the kinematic equations.

Serial singularity has an interesting property: close to such a singularity
the velocity of the end-effector will be very small even for large actuator
velocities and hence the robot will be very accurate. This property has been
studied by Zabalza (644) but is difficult to use.

6.3. Parallel singularities

6.3.1. MOTIVATIONS FOR THE STUDY OF SINGULARITY

The study of parallel singular configurations, or more exactly of redundant
output singularity, is important for

− control issues: the pose of the end-effector is no longer controllable
− safety issues: elements of the robot may be submitted to very large

forces, causing a breakdown of the robot. It is sometime believed that
this is only an academic problem, but after experimenting such break-
down with our ”left hand” prototype, and having seen another one
with an industrial prototype we cannot agree with this statement . . .
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Singularity analysis may be studied along several directions that we will
address in the remainder of the chapter:

− for a better geometrical understanding of the singularities, which may
lead to a systematic discovery of these singularities and to determining
what will be the possible motion of the end-effector at a singularity

− for defining an index that allows one to determine how close a pose is
to a singularity

− for investigating the relation between a set of poses and singularities.
For example we may have to check if the robot workspace or a robot
trajectory does not include a singularity, or to find the largest cube in
the robot workspace that is singularity-free

Parallel singularities may also be useful in some cases. A large amplifica-
tion factor between the end-effector motion and the actuated joint motion
may be interesting for fine positioning devices with a very small workspace.
Another example is the force sensor proposed in (495) which is close to a
singular configuration in order to improve its sensitivity along some mea-
surement directions. We will also mention in a later section (6.8) a possible
application of robots whose singularity leads to a finite motion.

Another possible use of singularities will be to sort the solutions of the
direct kinematics. We have seen that powerful methods are available to de-
termine all solutions of the problem, but that we were unable to determine
which solution corresponds to the current pose. Now assume that the initial
assembly mode of the robot is perfectly known: a direct kinematics solution
will be a candidate to be the current pose of the platform only if it can be
reached from the initial assembly by a singularity-free trajectory. In other
words, the solution must belong to the same aspect (see section 6.9) as the
initial assembly mode. Although determining if such a trajectory exists is
still an open problem, it may be thought that singularity consideration may
help to sort the solutions of the direct kinematics. Singularity considera-
tion may not lead to a unique solution (i.e. eliminating all solutions of the
direct kinematics except the current pose) because Innocenti (275) showed
that it was possible, for planar parallel robots, to go from one solution of
the direct kinematics to another without encountering any singularity. The
same result has been reported by Chablat (80) and Hunt (252) for spatial
robots. Note that the separation of the workspace into aspects implies that
the useful workspace may be reduced to the aspect that includes the initial
assembly mode. We will address this problem in the ”Workspace” chapter.

6.3.2. SINGULARITY ANALYSIS

The search for singular configurations rests on the study of the singular-
ities of the full inverse kinematic jacobian matrix, which is usually ob-
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tained through a velocity analysis (see the previous chapter) or through an
analysis of the mechanical equilibrium (see the ”Statics” chapter). A di-
rect analysis will thus involve the calculation of the determinant of matrix
the J−1

fk , which may be a complicated task, even with symbolic compu-
tation software. Calculating a closed-form for the determinant will usu-
ally be possible for robot with 3 d.o.f. (planar (524) or spherical (525))
but will be more difficult for a larger number of d.o.f. It was shown to
be possible first for specific 6 d.o.f. robots (165; 569) and then by Mayer
St-Onge (391) for 6−UPS robots. A compact form of the determinant
may sometimes be obtained by using Grassmann-Cayley algebra (33; 142;
549). In some cases the analytical form of the determinant may be used to
obtain interesting information; for example Pernkopf (473) shows that for a
Gough platform with planar base and platform there will be a singularity-
free ball centered at xc = yc = 0 when the base and platform frames have
the same orientation, provided that the base and platform are not coplanar.

Note also that the elements of the inverse kinematic jacobian are usually
functions of the pose parameters X, and are difficult to express as functions
of the actuated joint variables Θa. This implies that usually singularity
conditions cannot be obtained in the actuated joint space, although it has
been possible in one case (611). Calculating the determinant is only the
first stage; the second stage, finding the poses that cancel the determinant,
is even more difficult.

Researchers like Fichter (164) and Hunt (248) have intuitively ana-
lyzed particular cases of singularity for the inverse jacobian matrix of a
6−UPS robot, and have obtained a certain number of cases that will be
presented in this chapter. But intuition has its limits, and since the direct
method is not satisfactory, researchers have suggested methods based on
the degeneracy of the screws that are associated with the robot links (337;
560). These methods are equivalent to the geometric approach that we will
present, but may be more difficult to use. A preliminary result on the ge-
ometry of the singularities was obtained by Cauchy (75); this shows that
the singularity of an articulated octahedron could be obtained only for con-
cave configurations. We now discuss a geometrical method that allows us
to obtain a better understanding of the geometry of the singularities.

6.4. Grassmann geometry

We recall the definition of a Plücker vector for a line; for two points M1,
M2 on the line and a reference point O, the Plücker vector, of dimension
6, is

Pr = [M1M2,OM1 × OM2] = [M1M2,M2M1 × OM2] = [p,q]
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A line is represented by any vector λPr where λ is an arbitrary non-zero
scalar. A 6-dimensional vector will represent a line if p.q = 0 and q is
not the zero vector. Two lines with Plücker vectors Pr

1 = [p1,q1], Pr
2 =

[p2,q2] intersect if and only if p1.q2 + q1.p2 = 0. Plücker vectors with
p = 0 do not represent real lines and are associated with a line at infinity.
All lines at infinity belong to a plane, the plane at infinity. A point may
also be represented by the Plücker coordinates (α, r) so that its coordinates
are r/α. If α = 0, then the point is at infinity, and a point (0, r) at infinity
is on the line at infinity (0,q) if and only if r.q = 0. Consequently a
point at infinity that belongs to the two lines at infinity (0, s1), (0, s2) has
coordinates (0, s1 × s2).

The representation of a line by its Plücker coordinates is redundant
because the dimension of this vector is 6, although only 4 parameters are
needed to define a line. This redundancy may be decreased by introducing
the normalized Plücker vector Prn defined by:

Prn = [
M1M2

||M1M2||
,
OM1 × OM2

||M1M2||
]

We have seen in the previous chapter that the columns of the full inverse
kinematic jacobian matrices of most parallel robots are constructed from
the Plücker vectors, normalized or not, of lines associated with links of
the manipulator. The singularity of this matrix therefore means that there
will be a linear dependence between these vectors. If n Plücker vectors are
linearly independent, they will span a variety with dimension n ≤ 6; if
some of them are linearly dependent, the dimension of the variety will be
less than n. H. Grassmann (1809-1877) showed that linear dependence of
Plücker vectors induced geometric relations between the associated lines,
so that a set of n Plücker vectors creates a variety with dimension m < n.
He established the geometrical conditions on a set of n+1 lines so that the
induced variety has dimension n. For a thorough introduction to Grassmann
geometry, see (117; 486; 592), and for its application to the singularity
analysis of parallel robots see (107)∗,(215).

Grassmann’s geometrical conditions allows us to design an algorithm
for finding the singular configurations of any type of parallel robot whose
full inverse kinematic jacobian consists of Plücker vectors. We will consider
all sets of n lines that are associated with the vectors, and then determine
what should be the pose of the moving platform so that the n lines satisfy
one of the geometrical conditions which ensure that they span a variety of
dimension n − 1, thereby leading to a singularity of the robot.
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6.4.1. VARIETY AND GEOMETRY

We now list the geometric conditions that ensure that the dimension of the
variety spanned by a set of n + 1 Plücker vectors is n, for each possible
dimension n of the variety. Note that we will often mention the case of
intersecting lines; these include parallel lines, which intersect at infinity.

We shall start with the dimensions going from 1 to 3 (figure 6.1); for
the variety of dimension 1 (called a point) there is just one Plücker vector
and one line. A variety of dimension 2, called a line, may be constituted
either by two Plücker vectors for which the associated lines are skew, i.e.
they do not intersect and they are not parallel, or be spanned by more than
two Plücker vectors if the lines that are associated with the vectors form a
planar pencil of lines, i.e. they are coplanar and possess a common point
(possibly at infinity, to cover the case of coplanar parallel lines).

A variety of dimension 3, called a plane, is the set of lines F that are
dependent upon 3 lines F1,F2,F3. It is possible to show that all the points
belonging to the lines F lie on a quadric surface Q. This quadric degenerates
to a pair of planes P1,P2 if any two of the three lines F1,F2,F3 intersect.

− condition 3d: all the lines are coplanar, but do not constitute a planar
pencil of lines; F1,F2,F3 are coplanar and P1,P2 are coincident .

− condition 3c: all the lines possess a common point, but they are not
coplanar; F1,F2,F3 intersect at the same point, possibly at infinity
(this covers the case of parallel lines).

− condition 3b: all the lines belong to the union of two planar pencils of
non coplanar lines that have a line L in common; F2,F3 intersect at a
point p, and L intersects F1 at a. Two different cases may occur:

• P1,P2 are distinct and intersect along the line L. The set of de-
pendent lines are the lines in P1 that go through a, and the lines
in P2 that go through p

• P1,P2 are distinct and parallel. This occurs if two of the lines Fi

are parallel; L is a line at infinity, and the set of dependent lines
are two planes of parallel lines

− condition 3a: all the lines belong to a regulus; F1,F2,F3 are skew

Condition 3a must be explained in more detail. Consider three pairwise
skew lines in space. The lines which intersect all three of these skew lines
define a set, called a regulus. This set of lines, the regulus, constitutes a
surface, a hyperboloid; the three skew lines are said to be the generators or
transversals of the surface. In 1645, Sir Christopher Wren showed that apart
from the regulus, a second set of lines generates the same hyperboloid; this
second set is called the complementary regulus. The hyperboloid therefore is
a surface that is doubly ruled. The lines of the reguli possess an interesting
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characteristic: all the lines of a regulus intersect all the lines of the other
regulus and none of its own regulus.

d)c)
b)a)

3

2

1

rank

Figure 6.1. Grassmann varieties of dimension 1,2,3.

We now list the geometrical conditions that characterize the varieties of
dimension 4 and 5 (figure 6.2). A variety if dimension 4, called a congruence,
corresponds to a set of lines which satisfies one of the following 4 conditions:
− condition 4d: all the lines lie in a plane or meet a common point that

lies within this plane. This is a degenerate congruence.
− condition 4c: all the lines belong to the union of three planar pencils

of lines, in different planes, but which have a common line. This is a
parabolic congruence.

− condition 4b: all the lines intersect two given skew lines. This is a
hyperbolic congruence.

− condition 4a: the variety is spanned by 4 skew lines such that none of
these lines intersects the regulus that is generated by the other three.
This is an elliptic congruence.

4a

4b

4c

4d

5a
5b

Figure 6.2. Grassmann varieties with dimension 4 and 5. The varieties are generated
by the thin lines.

A variety C of dimension 5, called a linear complex, is defined by two
3-dimensional vectors (c, c) as the set of lines L with Plücker coordinates
(l, l) such that c.l + c.l = 0. The complex may be
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− singular (5b) if c.c = 0. All the lines of the complex intersect the line
with Plücker coordinates (c, c).

− general or non singular (5a) if c.c �= 0
The degree of freedom associated with a linear complex is a screw mo-
tion (248) with axis defined by the line with Plücker vector (c, c−pc)/||c||,
where p = c.c/||c|| is the pitch of the motion. All coplanar lines of a non
singular complex are in a plane that is normal to the helical motion at a
point, and intersect this point, thereby constituting a planar pencil of lines.

6.4.2. EXAMPLES OF GEOMETRICAL ANALYSIS

Line geometry has been used for the singularity analysis of numerous robots
(see for example (427) and the references Web page). We will present here
some typical examples: the planar 3−RPR, the 3−UPU and the MSSM
(figure 6.3).

C B2
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B3
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A2

n3

n1

A1
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nisi

1 2

3

45

6

A1,6

A2,3

A4,5

B1,2

B2,3
B5,6

Figure 6.3. The planar 3−RPR robot, the 3−UPU robot and the MSSM.

6.4.2.1 Planar 3−RPR manipulator
We have established in section 5.2.2.1 the full inverse kinematic jacobian of
this type of robot as⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ρ̇1

ρ̇2

ρ̇3

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n1 CB1 × n1

n2 CB2 × n2

n3 CB3 × n3

z 0
0 x
0 y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vx

vy

vz

Ωx

Ωy

Ωz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.6)

The 3 first rows of the full inverse kinematic jacobian J−1
fk are the Plücker

vectors of the lines associated with the legs of the robot. In these vectors the
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third to fifth components will be 0. The fourth row is a line perpendicular
to the robot plane and going through the origin. The remaining rows are
lines at infinity.

A row of the 3× 3 inverse kinematic jacobian matrix J−1
k is constituted

of the 2 first components of ni and the last component of CBi × ni. By
expanding the determinant of J−1

fk with respect to its last three rows, we
find that the determinant of this matrix is equal to the determinant of J−1

k .
If Ak denotes the set of row vectors of J−1

k , and Afk the first three row
vectors of J−1

fk , a linear dependence between the vectors of Ak (Afk) implies
a linear dependence between the vectors of Afk (Ak). Hence the full inverse
kinematic jacobian will be singular if and only if the Plücker vectors in Afk

(which describe the lines associated with the legs of the robot) are linearly
dependent. Hence according to the Grassmann conditions, the robot will
be singular if the three legs are coplanar, and their associated lines meet
the same point (possibly at infinity i.e. if the legs are parallel).

Sefrioui (526) did a thorough analysis of the singularity condition of
planar robots, and showed that, in general, it is a quadratic equation.
Bonev (51) presents an exhaustive analysis of the singularity condition for
all types of planar parallel robots.

6.4.2.2 3−UPU manipulator
We will consider here the case of the 3−UPU robot as a translation mecha-
nism (figure 6.3). The full inverse kinematic jacobian has been established:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ρ̇1

ρ̇2

ρ̇3

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n1 (CB1 × n1)
n2 (CB2 × n2)
n3 (CB3 × n3)
0 s1
0 s2
0 s3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vx

vy

vz

Ωx

Ωy

Ωz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.7)

where the vector si are the vectors obtained as the cross-product of the
vectors associated with the axes of the base U joint of the legs. The inverse
kinematic jacobian Jk reduces to a 3×3 matrix constituted of the ni vectors.
If T is the 3×3 matrix constituted of the si vectors, the determinant of Jfk

is equal to |Jk||T|. Hence a singularity is obtained when one of the following
conditions holds:

1. the legs of the robot lie in the base plane (or are parallel, which may
occur only for a particular geometry of the robot)

2. the vectors si are coplanar
3. two of the vectors si are parallel

These singularity conditions may also be explained by using Grassmann
geometry. Assume that the vectors si are not coplanar or parallel, then the
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variety spanned by the three last rows of Jfk includes the line at infinity
(0,n1 ×n2). If the lines associated with the legs of the robot lie in a plane,
then the line at infinity also belongs to this plane. Hence we have 4 lines
in the same plane which correspond to the singular configuration 3d, and
explain singularity 1.

The three last rows of Jfk represent line at infinity. The lines at infinity
(0, s1), (0, s2) intersect at the point (0, s1 × s2) and this point belong to
the line at infinity (0, s3) if (s1 × s2).s3 = 0. Consequently if this condition
is fulfilled the three lines are coplanar and intersect at the same point: this
is a singularity case justifying singularity 2. If two vectors si, sj are parallel
then (0, si), (0, sj) represent the same line, which explain singularity 3.

Singularity 2 has often been neglected as it does not appear if only Jk

is considered. This singularity was discovered during a CK meeting at the
Seoul National University (SNU) where a prototype was built that exhibited
large rotational motion, although Jk was not singular. In this prototype,
the first axis of the U joints on the base and platform intersected at the
same point, and in a given configuration the U joints axis were all horizon-
tal. Bonev and Zlatanov (48), and later on Di Gregorio (135), discovered
that this configuration leads to a constraint singularity as the vectors si
are all parallel. The associated infinitesimal motion is a 2 d.o.f rotational
motion along the horizontal axis that go through the intersection point of
the legs. In a later study Bonev and Zlatanov established that a constraint
singularity was also possible for the wrist version of the 3−UPU (666).

But a further question was prompted by the SNU prototype rotational
motion. The singularity 3 exists theoretically only in a given configuration
while the prototype exhibits very large rotational motion well away from
this singularity configuration. Bonev and Zlatanov (48) established that if
a system of 9 quadratic equations in 9 unknowns (the coordinates of the Bi

points) has multiple solutions, then the robot singular motion may become
finite. But these authors were not able to establish if there was geometric
design of the 3−UPU such that the system has multiple solutions. They
conjecture that this is not the case, and that the large motions were due to
the clearances in the U joints. The effect of a clearance in the U joint of the
robot on the motion of the end-effector was indeed emphasized by Han and
co-workers (212), who showed that the 3−UPU is indeed highly sensitive to
these clearances; this may explain the large motion of the SNU prototype.
A similar result was obtained by Wohlhart for the 6−UPS robot (623).

6.4.2.3 MSSM
This section presents an extensive analysis for the MSSM (figure 6.3) and
was presented in (397) together with an analysis of the TSSM (for the TSSM
another interesting geometrical approach based on the singular configura-
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tion of a characteristic tetrahedron was proposed by Ebert-Uphoff (154)).
We assume that no link is coplanar with the base, and that, as a conse-
quence, the platforms are not coplanar. The case when two lines are iden-
tical is therefore excluded, especially as the geometry of the MSSM would
not accept it. The plane containing links i, j will be denoted Pij.

6.4.2.3.1 Variety of dimension 2
Consider the case when 3 Plücker vectors are linearly dependent, and,

as a consequence, the 3 associated lines are coplanar and have a common
point. We note that for any triplet of lines that may be coplanar (1, 2, 3
for example, see figure 6.4), two of these lines will have a common joint
center on the moving platform (B1). This point must therefore be the

A1

B1

A2

B3

1

2 3

Figure 6.4. Three lines of a MSSM in the same plane.

center of the pencil of lines. Moreover, the third line has a common joint
(A2) with one of the other two lines although, now, the joint is connected
to the base. If this third line includes the center of the pencil, it would
then have two common points with one of the other two lines and would
be identical to it (in our example, line 3 should be identical to line 2); but
this was excluded in our hypothesis. Therefore no set of 3 Plücker vectors
may span a dimension 2 variety.

6.4.2.3.2 Variety of dimension 3, case 3d
Let us now consider 4 lines and see whether they may satisfy condition

3d, i.e. that the 4 lines are coplanar. Using the previous paragraph, we know
that at least two of these lines have a common point on the base, or the
moving platform, and that another pair has a common point on the moving
platform or the base. Under these conditions, the only possible line quadru-
plets are (1,2,3,6), (2,3,4,5), (1,4,5,6). Simple permutations of the frames
of the base and mobile allow us to study just the quadruplet (1,2,3,6). We
note that if (1,2,3,6) are coplanar, then the moving platform also lies in
this plane. We will thus obtain Hunt’s singular configuration shown in fig-
ure 6.5. We will now outline how to derive a singularity condition in terms
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Figure 6.5. Singular configuration of the 3d type for a MSSM.

of xc, yc, zc, the coordinates of C, and of ψ, θ, φ, the Euler angles. The sin-
gularity condition of the the co-planarity of the lines (1,2,3,6) is expressed
with the following equations:

(A1B1 × A2B2).A3B3 = 0 , (6.8)

(A1B1 × A2B2).A6B6 = 0 . (6.9)

Equations (6.8), (6.9) constitute a linear system in yc, zc; xc is absent. The
determinant ∆ of this system is ∆ = K sin θ sin ψ, where K is a non-zero
constant. If ∆ �= 0, yc, zc may then be calculated, but these values lead to
(A1B1×A2B2) = 0. Links 1, 2 then are collinear and lie in the plane of the
base, which was excluded in our hypothesis. We therefore have to consider
∆ = 0. This condition will be satisfied if sin θ = 0, i.e. θ = 0 or θ = π.
If θ = 0, then equations (6.8), (6.9) can be satisfied simultaneously only if
zc = 0 and all the links then lie in the base plane, which was excluded in
our hypothesis. For θ = π a similar result is obtained.

The determinant ∆ is also zero when sin ψ = 0, i.e. ψ = 0 or ψ = π. In
both cases, equations (6.8), (6.9) are identical. For ψ = 0 we get

zc = −(ya2 − yc) sin θ

cos θ
= H3d3(yc, θ) (6.10)

while for ψ = π we get zc = −H3d3(yc, θ). The 3d singularity condition is
therefore

ψ = 0 zc = H3d3(yc, θ) ∀xc, φ (6.11)
ψ = π zc = −H3d3(yc, θ) ∀xc, φ (6.12)

It is noteworthy that in this 3d configuration, the 6 lines intersect the line
B3B5: this is therefore also a 5b configuration and the lines constitute a
singular complex.
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6.4.2.3.3 Variety of dimension 3, case 3c
Consider case 3c, when the 4 lines have a common point. Within a

quadruplet of lines, two lines have one common point Ai on the base,
whereas the other two share Bj on the moving platform. For each of these
pairs, the lines cannot have any other common point, or they will be iden-
tical. The only case when these 4 lines could share a point is when the
points Ai and Bj are the same, which was excluded in our hypothesis. This
configuration therefore is not possible.

6.4.2.3.4 Variety of dimension 3, case 3b
Now consider case 3b, where the 4 lines belong to the union of two

planar pencils of lines. The different types of possible quadruplets lead to
the study of the following quadruplets of lines: (1, 2, 3, 4), (1, 2, 3, 5), (1,
2, 3, 6).
− quadruplet (1, 2, 3, 4): we know the centers B1,B3, of the two pencils,

as well as their plane, P12, P34. If a line belongs to the two pencils, it
will be supported by B1B3. As a consequence, B1B3 belongs to the
intersection of the two pencils planes, i.e. P12, P34. However, point A2

belongs to this intersection and thus the points A2, B1, B3 would be on
a line; this means that lines 2 and 3 are identical, which we excluded.

− quadruplet (1, 2, 3, 5): the line shared by the two pencils belongs to the
intersection of P12, P35, and thus A2 belongs to this line. The center B1

of the pencil that is spanned by 1 and 2 also belongs to this common
line, and therefore this line is line 2. One point of line 3 also belongs to
this line and therefore lines 2 and 3 are identical, which we excluded.

− quadruplet (1, 2, 3, 6): the planes P12, P36 share the points A1, A2

that therefore support the common line, although this line does not go
through the center B1 of the pencil that is spanned by 1 and 2. This
condition therefore cannot be satisfied.

6.4.2.3.5 Variety of dimension 3, case 3a
In case 3a, the 4 lines belong to the same regulus. We know that all the

lines of a regulus are skew: due to the special geometry of the MSSM there
cannot be a quadruplet of links in which all the associated lines are skew,
and consequently no lines may belong to the same regulus.

6.4.2.3.6 Variety of dimension 4, case 4d
Consider 5 lines in the 4d configuration where the 5 lines lie in the

same plane or have a common point in this plane. First, we must note that
it is impossible to have 5 coplanar lines; we already examined this case
for the 3d configuration. This leaves us with the case when three lines are
coplanar; there are two situations. The first is when two of the three lines
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have a common joint on the moving platform. We may then show that
for each remaining pair of lines, the points which belong to the plane of
configuration 4d will be the pairs Ai, Bj , and by hypothesis these cannot
be identical. For example, for the triplet 2, 3, 4 the intersection between
the plane 234 and the pair 1, 5 will be the points A5, B2. The second is
when none of the three lines, say none of 2, 3, 5, has a common joint point
on the moving platform. Then one of the remaining lines, 4 in the last case,
will be coplanar with the considered triplet. We are then able to apply the
result obtained for 4 coplanar lines.

The remaining case is when 3 lines have a common point lying in the
planes of the two remaining lines. Without loss of generality, we assume that
the coplanar lines are the lines 1-2. The lines 3-6 intersect this plane at dis-
tinct points (A1 and A2) and therefore only the 2 quintuplets (1,2,3,4,5)
and (1,2,4,5,6) may possibly satisfy the geometric condition. For these quin-
tuplets, the point intersecting the plane is A3 or A6. However, as for the
line triplets (3,4,5), (4,5,6), two lines already have a common point (B3 or
B5). They therefore cannot have another common point; this concludes the
study of this case.

6.4.2.3.7 Variety of dimension 4, case 4c, 4b
Case 4c may quickly be set aside, as it involves 3 lines belonging to one

pencil of lines. Case 4b, in which the 5 lines all meet two skew lines, needs
to be studied. Without loss of generality, we may consider the quintuplet
(1,2,3,4,5). First note that it is impossible for both of two skew lines to in-
tersect two (or more) coplanar lines: 1,2,3 should therefore not be coplanar.
If a line intersects the lines 1, 2, 3, then we have 3 possibilities:

− (4b1) the line lies in the plane 2-3 and goes through the center of the
joint on the moving platform common to 1-2 (line D1, figure 6.6).

− (4b2) the line lies in the plane 1-2 and intersects 3 in the joint on the
base common to 2 and 3 (line D2, figure 6.6).

− (4b3) the line intersects both B1 and B3.

A line having a common point with 4-5 either lies in the plane 4-5 or goes
through the center of the joint on the base common to 4 and 5 (A4). In the
4b1 case if a line intersects 1-2-3-4-5 the line is either in the plane 1-2 or in
the plane 2-3 while it lies in the plane 4-5, which is possible only if 2-3-4
are coplanar, in which case we cannot find another skew line which meets
the conditions. Note that if the line intersects 5, then it goes through A4;
we must exclude Hunt’s configuration in which 5 is coplanar with 2-3-4.

In case 4b2 there is no line in the 1-2 or 2-3 plane which goes through
A4 and hence no line can intersect at the same time 1-2-3-4-5. In case 4b3 if
the line B1B3 intersects 5, then 2-3-4-5 are coplanar (Hunt’s configuration)
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Figure 6.6. Two skew lines (D1, D2) intersect the line associated to links 1, 2, 3.

and there will be no other skew line intersecting 1-2-3-4-5. To summarize,
we cannot find two skew lines intersecting all the 5 lines of the quintuplet.

To conclude the quintuplet of lines, we have to consider the case 4a.
Here, the problem is to determine whether two of the lines may intersect the
regulus that is generated by the other three in a proper point. Consider the
lines (1,2,3,4,5); the only triplet of skew lines in this quintuplet is (1,3,5),
although lines 2 and 4 intersect the lines of this triplet. The condition
therefore cannot be met.

6.4.2.3.8 Variety of dimension 5, case 5b
Consider a sextuplet of lines.in a singular complex configuration 5b. In

this case, the 6 lines all intersect a line. We have seen (case 4b) that all
lines of a quintuplet can meet one line only in two cases:

− the line contains one edge of the moving platform, and the 4 successive
links are coplanar; this is Hunt’s configuration.

− three links are coplanar, and the line goes through joints on the base
and the moving platform that are not common to two of the three
links, as shown in figure 6.7.

Let us study the first case. Consider the line B4B5, that intersects lines
3,4,5,6 by construction. If it shares a point with 1, then the links 1,2,3,6
are coplanar, and all the lines then intersect one line; this is equivalent to
Hunt’s configuration.

In the second case, we assume that the coplanar links are 2,3,4 and
consider the line B2A4, (D). This line intersects links 1,2,3,4,5; let us now
rotate the moving platform around the edge B4B2. Let M be the intersection
of line 6 with the plane 2-3-4: figure 6.7 clearly shows that one may find a
rotation that takes M onto the line (D). This line will then share a point
with all 6 lines that are associated with the links.
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Figure 6.7. 2-3-4 being coplanar, line (D) here intersects the 5 lines (1,2,3,4,5) by
construction. When the moving platform rotates around B2B4, the sixth line may then
intersect (D) at point M.

Such a configuration is characterized by its triplet of coplanar lines. It
is easy to show that if there are not 4 coplanar lines, the only triplets to
consider are (1,2,3), (1,5,6), (2,3,4), (3,4,5), (4,5,6). As for the case 3d, one
may transform the study of these triplets into the study of the triplet (1,2,3)
via ad hoc frame modifications. In this case, line A1B3, (D), intersects
lines (1, 2, 3, 4, 6) by construction. We then have to state the condition
indicating that line 5 intersects (D). Co-planarity of (1,2,3) is expressed by
the following equation:

(A1B1 ×A2B2).A3B3 = 0 (6.13)

The intersection condition of 5 with the line A1B3 is:

A1B3.(OA5 × OB5) + A5B5.(OA1 × OB3) = 0 (6.14)

Equations (6.13)(6.14) constitute a linear system in yc, zc with determinant
∆ = K sin θ F (ψ, θ, φ). When ∆ �= 0, the singularity condition is:

yc = H5b1(xc, ψ, θ, φ) zc = H5b2(xc, ψ, θ, φ) (6.15)

Figure 6.8 shows an example of this type of singular configuration. When
∆ = 0 with θ = 0, equations (6.13)(6.14) leads to zc = 0, i.e. the links lie
in the base plane or,

tan ψ =
yb1

xb3

= − ya4

xa1

, (6.16)

which may be satisfied only for particular robot geometries. If θ = π equa-
tions (6.13)(6.14) leads to zc = 0, i.e. the links lie in the base plane or

tan(ψ − φ) =
yb1

xb3

= − ya4

xa1

(6.17)
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Figure 6.8. An example of singular configuration 5b for the MSSM. Lines 1,2,3 are
coplanar, and therefore line A1B3 meets links 1, 2, 3, 4, 6. Moreover, line A5B5 meets
line A1B3 by construction.

that may be satisfied only for particular robot geometries. The determinant
is also zero when F (ψ, θ, φ) = 0; this allow us to calculate ψ as a function of
θ, φ. Equations (6.13),(6.14), then give zc and xc. The singularity condition
may therefore be written as

ψ = H5b3(θ, φ) , zc = H5b4(yc, θ, φ) , xc = H5b5(yc, θ, φ) . (6.18)

6.4.2.3.9 Variety of dimension 5, case 5a
Having studied the case of the singular complex, we may now consider

that of the general complex (case 5a).
We have seen that one characteristic of a general complex is that all its

lines that are coplanar belong to a planar pencil, i.e. they have a common
point. Consider the planar pencils of lines that are spanned by the following
pairs of lines (1,6), (2,3) and (4,5). Each of these pencils possesses, in the
general case, a line Di that is coplanar with the base platform (figure 6.9).
If the 6 lines belong to a non singular complex, then lines Di, that belong
to pencils of lines that are spanned by lines of the non singular complex,
also belong to this complex. The lines Di must therefore have a common
point M , with coordinates (x, y, 0). Let vij be the vector perpendicular to
the pencil of lines that is spanned by lines i, j. The necessary conditions so
that lines Di belong to the pencil and intersect the point M are

A1M.v16 = 0 A3M.v23 = 0 A5M.v45 = 0 (6.19)

These three equations are linear in x, y. It is therefore possible to use two
of these equations to obtain x, y, transfer their values to the third and
thereby get the constraint equation. This constraint equation will have
degree 3 in zc, degree 2 in each of xc, yc, and coefficients that are functions
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2

Figure 6.9. The lines D1, D2, D4 belonging to the pencils spanned by (1,6), (2,3), (4,5)
are coplanar with the base platform. If the lines (1,2,3,4,5,6) constitute a non singular
complex, then the lines D belong to the same pencil.

of ψ, θ, φ. If θ = φ = 0, the constraint equation simplifies to tan ψ = U ,
where U is a function of the coordinates of Ai, Bi. This equation becomes
even simpler if the moving platform is symmetrical, since then we obtain
cos ψ = 0 which corresponds to a rotation of the moving platform around
the z axis by ±π/2. This particular singularity was observed by Fichter
experimentally (163) and then justified theoretically (164). The constraint
equation therefore generalizes Fichter’s configuration. Note that we have
solved a linear system to get this condition: if the determinant of this linear
system is 0, we then obtain equations that cannot be satisfied.

Let us consider an example of singular configurations of type 5a for the
standard MSSM, using the following parameters values: xc = 0, yc = 0, ψ =
40◦, θ = 40◦, φ = 40◦. The polynomial will have three real roots, leading
to three singular configurations, as described in figures 6.10,6.11,6.12.
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Figure 6.10. Perspective and plan view of the first singularity 5a.
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Figure 6.11. Perspective and plan view of the second singularity 5a.
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Figure 6.12. Perspective, plan and side views of the third singularity 5a.

We note that each singularity case of an MSSM amounts to the gener-
ation of a linear complex. Condition 5a therefore is the general equation
that defines the singular configurations, and simply takes a particular form
in cases 3b, 5b; the fact that the development of the determinant of the
inverse jacobian leads to the equation obtained for case 5a has actually
already been demonstrated (391). We note that the geometric approach al-
lows us to obtain singularity conditions more easily than direct development
of the determinant.

Table 6.1 presents a summary of the conditions that the pose parameters
of the moving platform must satisfy so that the MSSM is singular. In this
table, we denote Xc = (xc, yc, zc), Ωc = (ψ, θ, φ).
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case singularity conditions

3d ψ = 0 zc = H3d3(yc, θ) ∀xc, φ

ψ = π zc = −H3d3(yc, θ) ∀xc, φ

5a
∑i=3

i=0
ai(xc, yc,Ωc)z

i
c = 0∑i=2

i=0
bi(xc, zc,Ωc)y

i
c = 0∑i=2

i=0
ci(yc, zc,Ωc)x

i
c = 0

θ = φ = 0 ψ = ±π
2

∀(Xc)

5b yc = H5b1(xc,Ωc) zc = H5b2(xc,Ωc)

ψ = H5b3(θ, φ) zc = H5b4(yc, θ, φ) xc = H5b5(yc, θ, φ)

TABLE 6.1. MSSM singularity conditions.

6.5. Motion associated with singularities

6.5.1. DETERMINATION OF THE SINGULARITY MOTION

The study of singular configurations presented in the previous section al-
lowed us to bring families of singularities to the fore. However we did not
examine the type and number of extra degrees of freedom that we ob-
tained in these configurations. This may easily be done by considering the
eigenvectors that are associated with the null eigenvalues of the full inverse
kinematic jacobian matrix. These eigenvectors define the motion of the ma-
nipulator that occurs with a null vector of joint velocities. According to the
reciprocity principle, they also give the external wrenches that cannot be
balanced by the joint forces.

In order to determine the eigenvectors, we substitute the relations de-
termined during the singularity analysis into the full inverse kinematic ja-
cobian matrix, and calculate symbolically a basis of the kernel of the linear
system defined by this matrix. This allows us to determine the rank of the
kernel (and therefore the number of d.o.f. gained by the robot at the singu-
larity) and to characterize geometrically the infinitesimal motions that are
associated with each type of singular configurations.

6.5.2. DETERMINATION OF THE INSTANTANEOUS ROTATION AXIS

Any rigid body displacement can be realized by a rotation about an axis,
the instantaneous rotation axis (IRA), combined with a translation parallel
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to that axis.
The determination of the instantaneous rotation axis (IRA) may be

made as follows. Suppose that a point M(x, y, z) belongs to the IRA; its
velocity VM then is collinear with Ω:

VM = αΩ . (6.20)

We have
VM = VC + MC × Ω , (6.21)

which leads us to

VM × Ω = VC × Ω + (MC × Ω) × Ω = 0 , (6.22)

this leads to 2 independent linear equations for x, y, z, thus defining two
planes. The IRA is the intersection of these two planes. The pitch h of the
motion is defined as

VM.Ω = h . (6.23)

If the pitch is 0 the motion is a pure rotation while it will be infinite for a
translation motion.

6.5.3. EXAMPLE: THE MSSM

We examine the different singularity cases for the MSSM. The vectors of the
basis of the kernel of the full inverse kinematic jacobian are denoted Ai (by
A, if the dimension of the kernel is 1). If Ai = (pi,qi), then pi represents
the translational velocity of the singular motion and qi its angular velocity
while (qi,pi) will be the Plücker vector of the IRA.

6.5.3.1 Type 3d configuration
We have seen that singularity conditions may be written

ψ = 0 , zc = H3b3(yc, θ) , ∀xc, φ; (6.24)
ψ = π , zc = −H3b3(yc, θ) , ∀xc, φ. (6.25)

We first assume that ψ = 0. If φ �= 0 the vector of the basis of the kernel
of the inverse jacobian is:

A = (0,
yb3 sin θ

sin φ cos θ
,− yb3

sin φ
,

cos φ

sin φ cos θ
, 1,

sin θ

cos θ
) (6.26)

When φ = 0, we obtain:

A = (0, yb3 sin θ,−yb3 cos θ, 1, 0, 0) (6.27)
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When ψ = π, φ �= 0, the vector of the basis is

A = (0,
yb3 sin θ

sin φ cos θ
,

yb3

sinφ
,

cos φ

sin φ cos θ
, 1,− sin θ

cos θ
) , (6.28)

when φ = 0 we obtain

A = (0, yb3 sin θ, yb3 cos θ, 1, 0, 0) . (6.29)

In all cases we see that the pitch of the motion is 0, which indicates a pure
rotation and the IRA is the line B3B5.

6.5.3.2 Type 5a and 5b configuration
We know that the infinitesimal motion that is associated with a complex is
a screw motion (248).

This study is limited to the case where θ = φ = 0 and the moving
platform is symmetrical. In this case, we know that the singularities are
obtained for Fichter’s configuration, ψ = ±π

2 . If ψ = π
2 matrix A is too

large to be given here but can be found in (397). It has the general form:

A = (1, U1
5a,

F 1
5a(yc)

U2
5a zc

,
F 2

5a(xc)
U3

5a zc
,
F 3

5a(yc)
U4

5a zc
, 1)

where the U i
5a are functions of the location of the Ai, Bi. However, if the

platforms are equilateral triangles that are inscribed in circles with radii
Rm, for the moving platform and Rb, for the base, we find

A = (0, 0,−RmRb

2xc
,
yc

xc
,
zc

xc
, 1) , (6.30)

if xc �= 0; otherwise

A = (0, 0,−RmRb

2zc
, 0,

yc

zc
, 1) . (6.31)

If yc = 0, we find a screw motion about the z axis, as described by Fichter,
whose pitch h is

h = −RmRb

2zc
. (6.32)

If xc = 0 and yc �= 0, we find a screw motion about an axis that is defined
by

x = − RmRbyc

2(y2
c + z2

c )
y =

yc z

zc
; (6.33)

the pitch is

h = − RmRb

2
√

y2
c + z2

c

. (6.34)
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If xc �= 0 and yc �= 0, we find a screw motion about an axis defined by

x = −x2
cRmRb − 2xcy

2
cy − 2xcz

2
c y − 2x3

cy + y2
cRmRb

2yc(x2
c + y2

c + z2
c )

,

z = −zc(RmRbxc − 2y2
cy − 2z2

c y − 2x2
cy)

2yc(x2
c + y2

c + z2
c )

, (6.35)

with pitch

h = − zcRmRb

2
√

x2
c + y2

c + z2
c

. (6.36)

Similar result may be obtained for ψ = −π
2 .

Type 5b is a special case of 5a with all legs intersecting the same line.
The associated motion is a pure rotation around this line.

6.6. Singularity indices

In the previous sections we have gained a better understanding of the geo-
metrical nature of the singularities. Now assume that the robot is at a pose
that is not singular i.e. for which the determinant of the full inverse kine-
matic jacobian is not 0. It may interesting to define a ”distance” to measure
how ”far” the pose is from a singularity. We quote the word ”distance” as
we may distinguish two different cases:
− the d.o.f. of the robot are only either translational or rotational
− the d.o.f. of the robot are a mix of translation and orientation

It is possible to define a distance, in the mathematical sense of a metric,
between two poses only in the first case. In the second case we may rely
only on a weaker notion, a singularity index.

Assume that we have a translational robot in a given pose M . We may
indeed measure the closeness of M to a singularity by determining the
closest singular pose Ms (an issue that has never been addressed to the best
of our knowledge) and use the distance between M,Ms for determining the
closeness to the singularity. But singularity has also a physical meaning, and
indicates a change in the kinematic behavior of the robot (e.g. that some
end-effector motion may become large for small changes in the actuated
joints variables) and it may happen that two poses with the same distance
to a singularity will exhibit different changes in kinematic behavior (see
exercise 6.6 for the 3−UPU robot). Hence even for such robot it may be
interesting to define a singularity index that is more indicative of such
changes, an issue that we will address in this section.

Voglewede (597) defines three conditions that a singularity index S(X)
should fulfill:
− C1: S(X) = 0 if and only if X is a singularity
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− C2: if X is non singular, then S(X) > 0
− C3: S(X) must have a clear physical meaning

As singularity is an invariant kinematic property, we believe that we should
add a fourth item:
− C4: S(X) should be invariant under a change of units

We have presented in the previous chapter kinematic indices that may
be used as singularity indices: the manipulability index

√
|JJT| as defined by

Yoshikawa (640), the inverse of the condition number 1/κ, and the smallest
singular value of J−1

fk , which will be 0 at a singularity. All these indices
have variants according to the inverse jacobian matrix on which they are
applied, and to the matrix norm that is used for their calculation.

These indices, although they are commonly used, satisfy condition C1, C2

but not C3, C4. Furthermore, we have observed in the previous chapter, sec-
tion 5.4.2.2, some coherence problems with these indices. Also we have also
observed on the INRIA ”left hand” an interesting phenomenon regarding
the manipulability index: it peaks just before the singularity. This peak cor-
responds to an extremely stable position of the manipulator, at which large
external forces may be balanced by small joint forces. However, this favor-
able characteristic exists only in a small part of the workspace, and a small
motion away from this configuration will lead to a very bad conditioning
for the robot.

Voglewede (597) defines various singularity indices M , either in the
velocity or force domain: we will focus on the velocity domain and will
consider the indices related to force in the ”Statics” chapter. In the velocity
domain Voglewede proposes a generic form of S as

S(X) =

{
min Θ̇

T
UΘ̇

subject to Θ̇ = J−1W, WT TW = 1

He presents various choices for the matrices U,T so that Θ̇
T
UΘ̇ and WT TW

have a physical meaning. He shows also that the calculation of the index
S is equivalent to solving a generalized eigenvalue problem, a well known
problem. However, for a robot exhibiting both translational and rotational
d.o.f. it appears that the choice of the matrices U,T is equivalent to making
a balance between translational and rotational motion, a balance that is
somewhat arbitrary. Voglewede considers that the most meaningful choice
for U is a diagonal matrix whose diagonal element are the stiffnesses of the
legs, while T is the inertia matrix of the end-effector. With that choice, S
become the lowest natural frequency of the robot, a physical characteristic
that makes sense from a control viewpoint. However this choice introduces
the dynamics of the robot, while a singularity index may be interesting only
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at the kinematic level (for example for characterizing the relation between
the positioning accuracy of the robot and the active joint measurement
errors).

Another approach is proposed by Wolf and Shoham (626) for robots
whose full inverse kinematics jacobian is constituted of Plücker vectors.
The principle is to determine the linear complex that is the closest to the
variety spanned by the Plücker vectors of the inverse jacobian. This linear
complex is found by using a method proposed by Pottmann (485). Physi-
cally it is shown that this index corresponds to finding the minimum of the
instantaneous work generated by the wrenches provided by the legs while
the end-effector is undergoing an infinitesimal twist. In a singular config-
uration the wrench will produce no work while the end-effector is moving
and this index will be 0.

Apart from the manipulability index, a major drawback of all proposed
singularity indices is that they usually do not have a closed form. They may
be calculated numerically for a given robot and pose, but their minimum,
average value and standard deviation over a given workspace or trajectory
are difficult to ascertain, although they are important in practice. Indeed,
when designing a robot, it is important to determine if it is singularity-free
over a given workspace, or alternatively if a given trajectory of the robot
is singularity-free. We will address this issue in the next section.

6.7. Singularity test

Previous sections have shown that Grassmann geometry allows us to obtain
relations between the pose parameters in a singularity. In practice, however,
an important problem is to determine whether there are singularities within
a given workspace or trajectory or not. For example this problem is crucial
during the design phase of a robot (checking if the whole useful workspace
of the robot is singularity-free) or during trajectory planning. In both cases
we are first interested by a fast straight yes-no answer; the location of the
eventual singularities is of lesser importance.

In certain cases, the location of the singularity may be represented
jointly with the workspace, thereby allowing a visual check. For instance, for
planar parallel robots, Sefrioui (526) suggested a method for representing
the workspace together with the singularity loci.

Our purpose is to present a generic method that will allow us to check
the presence of a singularity for any robot type and for any parametric tra-
jectory, or any workspace workspace defined in terms of constraints on the
pose parameters. The workspace that has to be tested for the presence of
singularity is therefore a m-dimensional finite variety, and the end-effector
poses that belong to the variety have parameters that are continuous para-
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metric functions of m parameters λ = {λ1, . . . , λm}. For example

− for a trajectory, the pose parameters will be defined as functions of the
time parameter.

− for a translational robot, the poses belonging to a spherical volume
will be defined by 3 parameters (e.g. the radius of the sphere and the
latitude and longitude angles)

Note that, as the variety is finite, the parameters λ1, . . . , λm are bounded,
i.e. each of them must belong to a known interval.

We have seen that a singularity is characterized by the cancellation of
the determinant of the 6× 6 full inverse kinematic jacobian (however for a
n d.o.f. robot with n < 6 it may be sufficient to check only the cancellation
of the n × n inverse kinematic jacobian if no constraint singularities may
occur). Using symbolic computation, it is possible to calculate the deter-
minant as an analytic function of the parameters in λ. Furthermore it is
reasonable to assume that one pose belonging to the variety is known, and
that it is possible to compute numerically the determinant of J−1

fk at this
pose. Without loss of generality we may assume that this determinant is
positive. The singularity test amounts to determining if there is another
pose belonging to the variety, such that the determinant is less than or
equal to 0, in which case any path between the two poses has to cross a
singularity.

For that purpose we will use interval analysis, as summarized in the
interval appendix. Given ranges for the parameters λ1, . . . , λm, interval
arithmetic allows us to compute a range [a, b] such that the value of the de-
terminant is included in this range for any value of the λi in their respective
ranges. Consequently, if a is strictly positive, the value of the determinant
cannot be negative, while if b is strictly negative, then the determinant
will always be negative. Interval arithmetic may lead to a < 0, b > 0: in
this case a bisection process is used on the parameters ranges. This process
is summarized in the interval appendix and a detailed implementation of
the algorithm is given in (413). Note however that some expertise in in-
terval analysis is needed to get an efficient implementation. Our current
implementation allows us to check a 6D workspace for a 6−UPS robot in
a computation time that ranges from less than 1 second to 30 seconds.

One of the advantage of this algorithm is that it allows us to deal with
uncertainties in the robot geometry, or with trajectory tracking errors. The
determinant may be interval evaluated even if its analytical form has in-
terval coefficients. Another advantage is that interval analysis may also be
extended to determine the presence of a singularity within a workspace
which is defined in term of joint coordinates under two assumptions:

− the workspace of the robot has only one connected component
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− it is possible to determine if the region in the joint space corresponding
to a hypercube in the task space belongs to the workspace

Another approach to singularity analysis is to determine some type of
largest component that is included in the robot workspace and which is
either singularity-free, or for which the inverse of a singularity index has
a value in a given range. A variant of the previous algorithm allows us
to determine, for example, the largest singularity-free box included in the
workspace, or such that for any pose in the box a singularity index lies in
a given range (for example see (82) for the Orthoglide robot).

A problem related to singularity indices is the classification, or strati-
fication, problem: can we establish a classification of the singularities with
respect to some properties in a way that is coordinate and dimension free?

6.8. Mechanisms in permanent singularity

Up to now we have considered that singularity should be avoided. However,
we may consider a completely different approach: we may design a mech-
anism whose singular motion will be finite and controlled by additional
actuators. For example the helical motion that is obtained for a linear com-
plex may be controlled with only one actuator, and that may be of interest
for various applications such as the manufacturing of complex shapes.

The problem is therefore to determine mechanisms whose singular mo-
tion is finite. Such a singularity is sometime called structural or architec-
tural. For the 6−UPS mechanism, this problem was the subject of the Prix
Vaillant, which was won by Borel (52) and Bricard (57). The problem was
to determine under what conditions a rigid body may show continuous mo-
tion when some points of the rigid body are compelled to remain upon fixed
spheres. Bricard (56) used a result of Chasles (1851) that demonstrated that
if the anchor points Ai on the base are constrained to lie on a conic section
and if the anchor points Bi on the platform are in projective correspon-
dence with the Ai points, then the lines connecting the Ai, Bi belong to
a linear complex (624). Bricard mechanisms were studied thoroughly by
Lebesgue (348) and Baker (23).

A thorough analysis of the permanent singularity of the 6−UPS has
been performed by Husty and Karger (258),(300)∗ and by Wohlhart (625)∗,
for planar parallel robots, a equiform planar platform, and finally for the
general case of non planar base and platform. For this later case, Husty
and Karger expand the determinant of the full inverse kinematic jacobian
which is a function of the pose of the robot. They then examine for which
condition all the constant coefficients of the determinant may be equal to
0. They show that a necessary condition for permanent singularity (called
self-motion by these authors) is that 4 anchor points on the base or on the
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platform must be collinear and then describe all possible singularity cases
with their associated motion (which is a variety whose rank may be 1, 2 or
3). A noticeable point is that in many cases we may add legs to the robot
without modifying the self motion and its nature.

Finally, as mentioned by Wohlhart (623), singularity motion for robot
cannot be disconnected from the effects of clearance. We have already seen
with the SNU 3−UPU robot that these clearances may extend the motion
initiated in a singularity from infinitesimal to finite, or enlarge the range of
the motion. In his paper, Wohlhart considers a robot in a singular position
which admits arbitrary first, second, . . . , nth time derivative inputs, and
defines their degree of shakiness as n. In terms of forward kinematics, the
maximum degree of shakiness corresponds to the cancellation of all the
coefficients of the direct kinematics polynomial. He then shows that the
uncertainties in the pose of the robot grow considerably with the degree of
shakiness.

6.9. Singularity-free path-planning and workspace enlargement

The singularity problem may be considered for a trajectory. We saw in
section 6.7 that it is possible to detect if a singularity occurs on a given ar-
bitrary trajectory. If this is the case, it is necessary to modify the trajectory
to avoid the singularities.

Dasgupta (128) proposed an algorithm to obtain a singularity-free tra-
jectory between two poses. The pose of the end-effector is taken as a func-
tion of one variable; the condition number is examined at discrete steps on
the corresponding straight line trajectory. If it is lower than a fixed thresh-
old, then the trajectory is modified in order to have a larger condition num-
ber. Later on, Dasgupta and co-workers suggested another approach (531)
which is an adaptation of the well known potential energy method that is
used for path planning of serial robots. They first define a function that is
the sum of a kinetic energy like term (that attracts the end-effector to the
goal pose) and a penalty term that increases as the robot comes close to the
boundary of its workspace or to a singularity. They then use a numerical
procedure to find a path that minimizes the integral of the function over a
finite time horizon. Dash (130) has proposed another approach, based first
on a sampling of the workspace, that allows us to determine singular points.
These points are regrouped in clusters that are enclosed in polygons that
are considered as obstacles for a global path planner. Then a local planner
may modify the nominal path locally to avoid singularity.

Nenchev (443) considered this problem by using an optimal control ap-
proach that minimizes the error between the nominal path and the followed
one. Bhattacharya (41) proposed a similar approach for a 6−UPS robot
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where the velocity of the end-effector is determined by minimizing the dis-
tance to the nominal path under constraints on the leg forces. In a second
approach Bhattacharya proposed to use as constraint that the determinant
of the inverse kinematic jacobian is kept constant. Although the second
approach may lead to leg forces that are larger than pre-set limits, it is sig-
nificantly faster than the first approach. A similar optimization procedure
was also proposed by Perng (472), with another penalty constraint, to avoid
the singularity. Jui (295) and Ider (261) have shown that if at a singularity
the drop of rank of the inverse kinematic jacobian is only one, then it may
be possible to control the acceleration so that the forces in the legs remain
bounded. An alternative is proposed by O’Brien (452) with passive joints
braking: when locking some joints in the neighborhood of a singularity it
is possible to avoid crossing it, at the expense of a loss of manipulability.

Another interesting problem related to singularities is to consider that
they may limit the useful workspace of the robot. Wenger (617) shows how
to manage the assembly mode of a planar robot to use the best of the
robot workspace. The workspace of a robot may be separated into different
regions, called aspects by Wenger, that are singularity-free and separated
by singularity varieties. Usually the robot operates within the aspect which
includes its initial assembly mode. But Hesselbach and co-workers propose
using the dynamics of 2 and 3 d.o.f. robots to cross the singularity between
two different aspects (232; 234). Another possibility is to use the kinematic
redundancy to avoid singularities (370; 565). Determination of the aspects
for spatial robots, sometime called the partitioning problem, is still an open
problem. A special case for the generation of a singularity-free path is for
n− 1-axis machining with a n d.o.f. robot: in that case only n− 1 d.o.f. of
the robot among the n possible are used. The free pose parameter may be
used to avoid singularity (see (532; 412) for examples).

6.10. Singularity and design

In the previous sections we have presented some methods for dealing with
the singularity problem:

− by checking that a given workspace or trajectory is singularity-free
(section 6.7)

− by modifying the trajectory to avoid a singularity (section 6.9)

We have also seen in section 6.8 that it was possible in some cases to design
a robot so that it exhibits finite motion during a singularity. The next
logical step will be to determine the dimensioning of a robot so that it is
singularity-free, at least in a given workspace. To the best of our knowledge
the issue of using the dependence between Jfk and the design parameters
to avoid the degeneracy of this matrix has never been fully addressed for
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a parallel robot (i.e. by considering all design parameters of a robot as
potential sources of change for the location of the singularity). We may
just mention the related work of Zhou (658) that shows the importance
of one design parameter on the location of the singularity of a four d.o.f.
robot. Another approach is to find the design parameters that maximize
the minimal value of a singularity index over a given workspace: we will
address this approach in the ”Design” chapter.

6.11. Exercises

Exercise 6.1: Determine the characteristics of the infinitesimal motion
in a singular configuration of a 3-RPR planar parallel robot for a non-zero
orientation angle.
Exercise 6.2: Determine the instantaneous rotation center of the motion of
a 3-RPR planar parallel robot when the robot is in a singular configuration.
Exercise 6.3: Consider a 3-RPR planar parallel robot with joint centers
coordinates:

xa1 = 0 , ya1 = 0 , xb1 = 0 , yb1 = 0 ,

xa2 = 5 , ya2 = 0 , xb2 = 3 , yb2 = 0 ,

xa3 = 1 , ya3 = 5 , xb3 = 2 , yb3 = 2 .

Establish, for a non-zero orientation angle, what is the value of yc as a
function of xc, so that the robot is in a singular configuration. Show that
joint forces generally tend to infinity if we apply a torque around C in these
singular configurations.
Exercise 6.4: Explain, using Grassmann geometry, why the following con-
figurations are singular for the Delta robot (99)∗ (a link denotes a member
of a parallelogram):

1. when all the 6 links are parallel
2. when 4 links are parallel
3. when 4 links lie within one plane
4. when the 6 links lie within one plane

Indicate how many degrees of freedom will be found in each case.
Exercise 6.5: Using the previous exercise, determine the singular pose
closest to a given pose
Exercise 6.6: Consider a 3−UPU robot designed so that the vectors si
in the full inverse kinematic jacobian, equation (6.7), are never coplanar
or parallel. Assume that none of the legs may become vertical. For a given
pose, determine the closest singular pose, and show that any pose in an
horizontal plane is at a constant distance from its closest singular pose.
Is the distance to the closest singular pose a convenient singularity index,
according to the criteria presented in section 6.6 ?
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Exercise 6.7: Consider a SSM with congruent platforms with a ratio k.
Determine under what condition the manipulator is always in a singular
configuration. Use the inverse kinematics equations, defining the rotation
matrix by the following columns (x1, x2, x3) (x4, x5, x6), (x10, x11, x12), and
the position of the reference point C by (x7, x8, x9). Define the intermediate
variables U = x1 x7 + x2 x8 + x3 x9, V = x4 x7 + x5 x8 + x6 x9, W =
x2

7 + x2
8 + x2

9, and take ai, bi, 0 as the coordinates of Bi. This exercise was
inspired by Guozhen (209).
Exercise 6.8: Consider a SSM with joint coordinate:

A1(−9, 13, 0) , A2(9, 13, 0) , A3(6, 5, 0) ,
A4(2,−10, 0) , A5(−2, 10, 0) , A6(−6, 5, 0) ,
B1(−1, 5, 0) , B2(1, 5, 0) , B3(4,−1, 0) ,
B4(2,−3, 0) , B5(−2,−3, 0) , B6(−1, 5, 0) .

Calculate the numerator of the determinant of J−1 in terms of xc, yc, zc

when the orientation is ψ = 0, θ = π/2, φ = 0. What is the nature of the
singularity curve in a plane for which zc is constant?
Exercise 6.9: Using the previous exercise, express |J−1| in terms of the
link lengths only.
Exercise 6.10: Explain how singularity conditions of the Hexa robot may
be determined.
Problem 6.1: Determine whether the singular configurations define con-
nected components for the solutions of the direct kinematics of spatial
robot.
Problem 6.2: Determine the singular pose that is the closest to a given
pose for a 3 d.o.f. parallel wrist
Problem 6.3: Classify the singularities of a MSSM, and distinguish those
that do not lead to infinite joint forces.
Problem 6.4: Find the singularity condition of a MSSM as functions of
the actuated joint variables (i.e. the length of the leg)
Problem 6.5: Express the determinant of the inverse kinematic jacobian
of a MSSM as a function of the leg lengths and of the orientation angles
(use the result of the previous problem).
Problem 6.6: Determine mechanisms that may exhibit permanent sin-
gularity apart of the 6−UPS and planar robots.
Problem 6.7: Determine mechanisms whose motion in permanent sin-
gularity is a variety of order greater than 3
Problem 6.8: Determine how to calculate the dimensioning of a given
robot so that it is singularity-free in a given workspace
Problem 6.9: Determine the aspects of a given 6−UPS robot
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Workspace

This chapter will present various methods for the determination of the
workspace of parallel robots. Different types of workspaces will be defined,
and algorithms for calculating them will be presented. The chapter will con-
clude with algorithms for the trajectory verification and motion planning
of parallel robots within the workspace.

7.1. Workspace limits, representation and type

Parallel manipulators motions can be restricted by different factors: me-
chanical limits on passive joints, self-collision between the elements of the
robot, limitations due to the actuators and singularity varieties that may
split the workspace into separate components.

The main problem with the workspace representation of parallel robots
is that the limitations on the d.o.f. are all usually coupled. Hence for robots
having more than 3 d.o.f. there will be no possible graphical illustration of
the robot workspace. This is not usually the case with serial robots. For
example, the workspace of a 6 d.o.f. serial robot with a concurrent axis
wrist may be represented by the 3D volume that may be reached by the
center of the wrist - this illustrates the translations, and by the surface
that may be reached by the extremity of the end-effector (which illustrates
2 degrees of freedom in rotation). The 3D volume depends only on the
motion capability of the first three actuated joints, while the orientation
uses only the last three joints. A graphical representation of the workspace
of parallel robots will be possible only for 3 d.o.f robots. For robots with
n > 3 d.o.f., workspace representation will be possible only if we fix n − 3
pose parameters. According to which types of parameters are fixed or to
the constraint we impose on the parameter, we will obtain different types
of workspace.

7.1.1. THE DIFFERENT TYPES OF WORKSPACES

The most usual types of workspace are:
− constant orientation workspace or translation workspace: all possible

locations of the operating point C of the robot that can be reached
with a given orientation

213
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− orientation workspace: all the possible orientations that can be reached
while C is in a fixed location

− maximal workspace or reachable workspace: all the locations of C that
may be reached with at least one orientation of the platform.

− inclusive orientation workspace: all the locations of C that may be
reached with at least one orientation among a set defined by ranges on
the orientation angles. The maximal workspace is a particular case of
inclusive orientation workspace for which the ranges for the orientation
angles are [0, 2π]

− total orientation workspace: all the locations of C that may be reached
with all the orientations among a set defined by ranges on the orien-
tation angles

− dextrous workspace: all the locations of C for which all orientations are
possible. The dextrous workspace is a particular case of total orienta-
tion workspace, the ranges for the rotation angles being [0, 2π].

− reduced total orientation workspace: all the locations of C that may be
reached with a subset of the orientation angles that may have any value
in defined ranges, while the others may have arbitrary values. Such a
workspace may be important for applications that do not involve all
the d.o.f. of the robot. For example, if a 6 d.o.f. robot is used as a
5-axis machine-tool, the φ orientation parameter is not important

In this chapter we will focus on workspaces that are limited only by
geometrical constraints. But other constraints may limit the useful robot
workspace: for instance we have already seen that a threshold on the value
of a singularity index may play a role in limiting the workspace of the
robot (82); Kumar (336) introduces the notion of controllably dextrous
workspace as the subset of the dextrous workspace which does not con-
tain any singular configuration. The workspaces we will calculate in this
chapter will always include such specialized workspaces. Even if we assume
a perfect knowledge of the robot geometry, calculation of the workspaces
is in general a complex task. We will thus suppose that this geometry is
perfectly known, but we must remember that manufacturing errors may
have an influence on the workspace (see for example (598) for an analysis
of this influence).

7.1.2. ORIENTATION REPRESENTATION

The most usual orientation parameters are the standard Euler angles ψ, θ, φ
and the pitch, yaw, roll angles. A problem with the Euler angles is that they
exhibit a representation singularity for θ = 0 as in this configuration the
rotation angle is ψ + φ. To solve this problem, Bonev (46) propose using
modified Euler angles, the tilt and torsion angles, describing the orientation
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by a first rotation of angle φ around the z axis, followed by a rotation of
angle θ around y, and then a rotation of angle ψ, the torsion, around the
new z axis. Bonev then discussed the best way to represent an orientation
workspace. He considered 3 possibilities:

− a coordinate system whose axes represent the three Euler angles
− a spherical coordinate system, where φ, θ are the azimuth and zenith

angles and ψ is the ray length
− a cylindrical coordinate system, where φ, θ are the circular coordinates

and ψ is the z coordinate

Bonev concluded that the last choice offers the best orientation workspace
representation. As an alternative Pernkopf proposed the use of the Euler
parameters which may offer a better visibility for some motions (473).

7.2. Workspace calculation methods

Various approaches may be used to calculate the workspace of a parallel
robot. We will summarize these methods in the next sections.

7.2.1. GEOMETRICAL APPROACH

The purpose of this method is to determine geometrically the boundary of
the robot workspace. The principle is to deduce from the constraints on
each leg a geometrical object Wl that describes all the possible locations of
X that satisfy the leg constraints. One such object is obtained for each leg
and the robot workspace is constituted of the intersection of all Wl.

Consider for example a chain of a 6−UPS robot, and assume that
the only constraint is that the length of the leg has to lie in the range
[ρmin, ρmax]: the extremity B of the chain is constrained to lie in a volume
which is comprised between the spheres with center A and radii ρmin, ρmax

(figure 7.1). If we further assume that the orientation of the end-effector is
constant, then each leg constrains C to lie in a similar region Wi

l whose cen-
ter is obtained by translating Ai by the constant vector BiC. The workspace
of the robot is then obtained as the intersection of the six Wi

l .
We may also consider a PRRS chain in which the prismatic actuator

is connected by a universal joint to a link of length l: the volume V that
may be reached by B is constituted of part of a cylinder with radius l and
height ρmax−ρmin, topped by two hemispheres with radius l (figure 7.1). If
the orientation is constant we can get Wi

l from V by a simple translation.
In some case such as the Delta, calculation of the workspace may be

done directly by CAD (100) since this calculation is equivalent to the in-
tersection of simple 3D volumes (see (138) for an analytical description of
the workspace boundary). The geometrical approach has also been used for
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l

Figure 7.1. The volumes that can be reached by the B point of the chain of a parallel
robot. On the left we have considered a chain of type RRPS in which the P actuator
has a length between ρmin, ρmax. On the right we have considered a chain of the type
PRRS with the same constraint on the P actuator and a link of length l connecting the
RR and S joints.

spherical robots (6; 64) and by Arun(18) for the robot of figure 2.57. The
choice of the task space may be important to simplify the calculation. For
example Husty (255), shows that homogeneous coordinates with an appro-
priate kinematic mapping may be appropriate, since they allow a simple
representation of the constraints for a planar 3−RPR robot.

This approach is usually restricted to 3D workspace and is able to deal
mostly with the constraints on the joint coordinates, although we will see
that joint limits and interference constraints may be taken into account in
some cases.

The main interest of the geometrical approach is that it is usually very
fast and accurate, and provides a minimal representation of the workspace
which may be used to calculate efficiently some characteristics of the work-
space, such as its volume. Its drawbacks are that it must be tailored to the
considered robot, it may be difficult to take all constraints into account,
and the minimal representation of the workspace may not be the most ap-
propriate for tasks such as motion planning. A possible simplified approach
is to compute only slices of the workspace, and to approximate the section
of Wl by polygons. This approach requires a good computational geometry
library that is able to execute Boolean operations, whether intersection,
union, or difference, on polygons with arbitrarily many edges.
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7.2.2. DISCRETISATION METHOD

Numerous papers dealing with workspace calculation use methods based
on the discretisation of the pose parameters, in order to determine the
workspace boundary. In this discretisation approach, the workspace is cov-
ered by a regular grid, either cartesian or polar, of nodes. Each node is
then tested to see whether it belongs to the workspace. The boundary of
the workspace is constituted of the set of valid nodes, where at least one
close neighbor does not belong to the workspace.

The advantage of this method is that it allows one to take into account
all constraints. But this approach has many drawbacks:
− the accuracy of the boundary depends on the sampling step that is used

to create the grid, the computation time grows exponentially with the
sampling step, so that there is a limit on the accuracy.

− problems occur when the workspace possesses voids.
− the boundary representation may involve a large number of nodes
− the boundary is used for different operations such as determination

of the workspace volume, inclusion of a trajectory in the workspace,
etc. When performed on a boundary represented by a discrete set of
poses, these operations are computer intensive. To avoid this draw-
back, Chablat (79) proposed storing the workspace representation as
an octree structure that allows faster motion planning and volume cal-
culation. Still, getting the structure is computer and memory intensive.

A web page allows us to use this method to calculate on-line the workspace
of 6−UPS and 6−PUS robots� AWE. .

7.2.3. NUMERICAL METHODS

Another approach to workspace calculation was suggested by Jo (292).
Taking the constraints on the joint coordinates into consideration, he trans-
formed the inequalities that are imposed by these constraints into equalities
by introducing extra variables. He then considered the generalized coordi-
nates (vector X), the joint coordinates (vector Θ) and the variables (vector
w) that are introduced by the transformation of the inequalities into equal-
ities. Let q be the vector that is constituted of all of these unknowns. The
structure of the mechanism leads to constraint equations on the compo-
nents of q which may be written in implicit form as Φ(q) = 0. Let JΦ be
the jacobian of the system, i.e. the matrix:

JΦ =
∂Φ
∂q

= ((
∂Φ
∂X

,
∂Φ
∂Θ

,
∂Φ
∂w

))

The workspace boundary is obtained as the set of vectors q, such that for a
given X, there will be not be a unique set of vectors Θ,w. In other words,
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the rank of the matrix:

((
∂Φ
∂Θ

,
∂Φ
∂w

))

is lower than its dimension. A numerical procedure is then used to calculate
the pose of the platform where this condition is satisfied. We note, however,
that Jo illustrated this approach only for the simple case of the calculation
of the constant orientation workspace of a 6−UPS robot. The introduction
of other constraints limiting the workspace would lead to a jacobian so
large as to render the procedure quite difficult to manage. Adkins (1) and
Haugh (221) manage to find a point on the boundary, and use a numer-
ical continuation method to follow the boundary. Although this approach
is general, Adkins and Haugh restrict their calculation for a constant ori-
entation workspace, as the general problem will be very complicated. But
these authors were able to predict the singularity barriers that may split
the workspace into different aspects (an aspect is a maximal singularity-free
component of the workspace). Instead of using a continuation method to
follow the boundary, some authors have proposed formulating that point
as a constrained optimization problem (544).

Another method is based on the principle that, for a pose on the bound-
ary of the workspace, the velocity vector of the moving platform cannot
have a component along the normal of the boundary. Agrawal (2) and Ku-
mar (336) use this method for manipulators with only revolute joints, and
applied it to various planar robots to calculate the maximal workspace and
the dextrous workspace. The main drawbacks of this method are that pris-
matic actuators cannot be considered, and it is quite difficult to introduce
the notions of mechanical limits and of interference between links.

An efficient method based on interval analysis is described in the interval
analysis appendix. It has the advantages of being able to deal will almost
any constraint and any number of d.o.f., and has proved to be efficient in
computing the most difficult case of 6D workspaces of 6−UPS robots (411).
However it provides only an approximation to the workspace (but up to an
arbitrary accuracy and with an error bound on the error) and is relatively
computer intensive.

Finally let us mention two special cases: micro-robots and wire robots.
Arai (15) considers the micro-robot case; he supposes that the actuator
motions are small enough so that he may consider the inverse jacobian to
be constant. Moreover, as the orientation changes are small, he considers
only the part J−1

t of the inverse kinematic jacobian corresponding to the
translatory motions, and writes for each link j ∆2Θj

a = ∆XT J−T
t J−1

t ∆X.
This relation means that, for each link and for a fixed maximal ∆Θj

a, the
center of the platform is inside a zone which is bounded by a quadric, and
the workspace is the intersection of these quadrics.
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For wire robots the tension in the wire should be positive and bounded
above. Hence the computation of the workspace is no longer a geometrical
problem but involves statics. This difficult problem is addressed in (285),
(342)∗, (422; 491; 508),(593)∗ .

The following sections will favor geometrical approaches that generally
are very efficient for the determination of various types of workspace; alge-
braic geometry will play an important role in some of the algorithms.

7.3. Planar manipulators

In this section we will consider 3-RPR planar manipulators1, as described
in figure 7.2. The other types of planar robots, namely the 3-RRR, 3-
PRR robots, will be studied only in the exercises, since their workspaces
may easily be calculated with variants of the algorithms presented in this
section.

A1 A2

A3

B3

B1

B2

x1

y1y

xO

C

Figure 7.2. A 3-RPR planar robot.

7.3.1. CONSTANT ORIENTATION WORKSPACE

We will suppose that the orientation of the moving platform is fixed, and
our goal is to determine all the possible locations for a reference point C
of the platform. The suggested algorithms represent a direct application of
the general method described in the previous section. We will successively
examine the influence of various factors on all these possible locations.

7.3.1.1 Joint coordinates limits
We assume that the minimum length of the linear actuators is ρmin while
their maximum is ρmax. As a result, the points Bi are located within annular
zones: the external boundary is a circle Cei with center Ai and radius ρmax,
while the internal boundary is a concentric circle Cii with radius ρmin.

1Most algorithms that are described in this section are available by anonymous ftp
in the directory coprin/Workspace/3-RPR
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Since the orientation of the platform remains constant, when the point
Bi moves within its zone, the point C moves within an analogous zone Wi

with boundaries which are circles Cei , Cii , represented by broken circles in
figure 7.3, the center Si of which may be obtained by translating Ai by the
vector BiC. If the constraints on link i are satisfied, then C must be inside

A1 A2

A3

B3

B1

B2

C

Ci3

Ce3

Ce1

Ci1

Ce2

Ci2

Ce3

Ci3

Ce1 Ci1

Ce2

Ci2

A1

A2

A3

Ce3

Ci3

Ce1

Ci1

Ce2

Ci2

W2

W1

W3

Figure 7.3. On the left, the geometrical elements that take part in the determination of
the constant orientation workspace of a 3-RPR planar robot. On the right, the workspace
as deduced from these objects (in grey).

Wi. The workspace is obtained when the constraints on all links are satisfied
and will therefore be the intersection of the three annuli W1,W2,W3; this
is easily calculated. The boundary of the workspace will be constituted of
circular arcs from the three annuli (figure 7.3).

7.3.1.2 Mechanical limits on the passive joints
In this section we suppose that in addition to the joint limitations, the
joints located on the base have limited rotational capacities. We assume
that the links may move only within an angular sector with amplitude αi.
The allowed zones Wi therefore are now annular sectors; their intersec-
tion constitutes the workspace. The boundary of the workspace is therefore
constituted of circular arcs and segments (figure 7.4). We may also impose
similar constraints on the joints located on the platform (see exercise 7.1).

7.3.1.3 Leg interference
In this section we will assume that the legs cannot intersect. Assume that
M is an intersection point between the legs AiBi, AjBj such that

AiM = λ1AiBi AjM = λ2AjBj
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Figure 7.4. On the left in grey, the workspace when the constraints are the joint
coordinate limits and the mechanical limits placed on the joints located on the base. On
the right the dextrous workspace of C, taking only the constraints on link 1 into account
(in hatched lines, l1 = ||CB1||).

For M to be an intersection point of the line segments AiBi, AjBj, we
must have λ1, λ2 ∈ [0, 1]. Solving the above system in the coordinates of
M and in λ1, λ2 we get that λm = Nm/Dm with m = 1, 2. The equations
Nm = 0, Nm = Dm,Dm = 0 define three lines for the location of C that
share a common point. Each of these lines splits the xc − yc plane into 2
regions: for example the line Nm = 0 leads to regions such that Nm > 0
and Nm < 0. Consider now the 2 infinite polygons Rm

1 ,Rm
2 obtained as the

intersection of the regions (Nm > 0,Dm > 0, Nm < Dm), (Nm < 0,Dm <
0, Nm > Dm): for each location of C in these polygons, we have λm ∈ [0, 1].
The intersection of all the pairs pairs of infinite regions (R1

k,R2
l ) with k, l

equal to 1 or 2 will define all the locations of C at which the legs i, j will
intersect.

7.3.2. ORIENTATION WORKSPACE

We will now suggest the basis for an algorithm that would provide a conve-
nient representation of the workspace that may be reached in rotation for
a 3-RPR planar manipulator with center in a fixed position; we represent
a possible orientation by the displacements of a point that is fixed on the
platform, and which is not its center. This approach may be generalized to
other types of planar robots.

We first determine the possible locations of the points Bi. These points
must be located within the annular zones imposed by the constraints on the
link lengths. However, for a fixed center, each of these points is also situated
on the circle CBi with center C and radius ||CBi|| (figure 7.5). As a result,
the point Bi is located on the portions Cj

Bi
of CBi that belong to the annular

zone. We now consider a point M that is rigidly connected to the platform.
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C
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CM1

C2
B1

C1
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Figure 7.5. On the left, the possible displacements of a point Bi when point C is fixed
(in bold). On the right, the possible displacements of a point M that is linked to the
platform, when point C is fixed, taking into account the constraints on the links i.e. the
parts CM1 , CM2 of the circle with center C, and radius ||CM||, and that were obtained
from the allowed zones for B1, C1

B1 , C2
B1 .

This point is located on a circle CM with center C. The angle between Bi

and M being fixed, we may calculate from the allowed zones for Bi, the
zones CMj allowed for M , by considering only the constraints on the link i
(figure 7.5). The allowed motions of M are the intersection of all the arcs
CMj when all the links are taken into account. We may easily introduce
constraints on the joints, as studied in the previous section. As for the
interference between the legs i, j, the equations Nm = 0, Nm = Dm,Dm = 0
defined in section 7.3.1.3 lead, for a fixed value of xc, yc, to up to two
solutions in the rotation angle. Consequently the circle on which Bi lies
will be split into circular arcs. The interesting arcs are the ones obtained
for (Nm > 0,Dm > 0, Nm < Dm), (Nm < 0,Dm < 0, Nm > Dm) that lead
to λ1, λ2 in the range [0,1]. These arcs are reported on the circle Cm and
if they intersect, then the intersection corresponds to the location of M for
which legs i, j intersect.

7.3.3. DEXTROUS WORKSPACE

The dextrous workspace is the set of locations of the reference point C for
which any orientations can be reached. We consider a 3-RPR robot and
a particular point C1 of this workspace; as all orientations are possible,
a point Bi must be able to describe a circle with center C1 and radius
||CBi||. This circle must be contained within the annular zone of link i.
Therefore if we take into account only the constraints on link i, the dextrous
workspace is the circular annular region CAi with center Ai and internal
and external radii ρmini + ||CBi|| and ρmaxi − ||CBi||. There is such a
region only if ρmaxi −ρmini ≥ 2||CBi|| (figure 7.4); the dextrous workspace
is the intersection of the three zones CAi. This method may also include
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constraints on the joints and legs interference.

7.3.4. MAXIMAL WORKSPACE

The maximal workspace is defined as all the locations of C that may be
reached with at least one orientation. The problem of determining the max-
imal workspace for 3-RPR robots was first mentioned by Kassner (304);
he noticed that the boundary of this workspace is constituted of circular
and sextic arcs, but determined these elements by a discretisation method.
We will present the main points of a method for calculating the boundary
of the maximal workspace of 3-RPR robots; details of this algorithm are
described in (408). Other types of robots are considered in the exercises.

We first note that it is easy to determine whether a point does belong to
the maximal workspace or not. We need to determine only whether at least
one orientation is possible for this position. Let us first consider point B1 for
the position of C that we are studying. This point may move on the circle
C1 with center C and radius ||CB1||. We then calculate the intersection
of C1 with the annular region that corresponds to the constraints on the
length of link 1; this is bounded by two circles C1

max, C1
min centered in A1

and with radii ρ1
max, ρ1

min.
If there is no intersection point, we test whether the circle C1 is inside

C1
max and outside C1

min; this may easily be done by testing whether point
C belongs to C1

max but not to C1
min. If this is the case, then all orientations

around C are allowable for the moving platform, as far as the constraints
on link 1 are concerned. If C1 is outside C1

max or inside C1
min, then no

orientation is possible and C does not belong to the maximal workspace.
The same method is repeated for links 2 and 3.

Let us now suppose that at least one of C1, C2, C3 possesses an intersec-
tion with its annular region. To each intersection point there corresponds a
rotation angle, and we sort all these angles, in order to obtain intervals Ii

n

(figure 7.6). We thus obtain 3 lists of possible intervals for the 3 links. We
calculate the intersection of all the triplets of intervals made from elements
belonging to each list. If this intersection is not empty, then the point be-
longs to the maximal workspace. We note that this procedure allows us to
determine both whether the point belongs to the maximal workspace and
what the possible values of the rotation angle are.

We will now determine the maximal workspace for a specific point of
the end-effector, namely point B3; for a different point, the algorithm uses
the same principle although it is slightly more complex. This point must lie
within its corresponding annular region. We then note that if B3 is located
on the boundary of the maximal workspace, then at least one of the links
will possess a length that will correspond to an extremum. We may then
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Figure 7.6. On the left, if C is in a fixed position, then the point Bi may describe a circle
Ci

B centered at C. The possible positions of Bi, and thus the rotation angles around C
are the intersections of the circles Ci

b with the circles in dashed lines, with centers Ai and
radii ρi

max, ρi
min. We thus obtain, for the three links, three lists of intervals that define

the possible rotation angles. If these three lists have an intersection that is not empty,
then point C belongs to the maximal workspace. In the figure, the intersection is empty:
the considered point does not belong to the maximal workspace.

distinguish various cases according to the number of links that have a length
at an extremum:

− a link is at an extremum: if the link i is at an extremum and B3 on
the boundary, the robot must be in a configuration such that points
Ai, Bi, B3 are aligned. Three cases are possible according to the order
of these points: AiBiB3, AiB3Bi, B3AiBi. Point B3 then lies on the
circles Ci

B3
, centered at Ai. We thus obtain a list of circles that could

potentially be part of the boundary of the workspace.
− two links are at extrema: when the lengths of links 1 and 2 are fixed,

then B3 lies on the coupler curve of a 4-bar mechanism, i.e. a sextic,
as studied in the ”Direct kinematics” chapter. There are 4 sextics to
consider; they correspond to the different possible combinations for
the lengths of links 1 and 2:(ρ1

max, ρ2
max), (ρ1

max, ρ2
min), (ρ1

min, ρ2
min),

(ρ1
min, ρ2

max).

Figure 7.7 presents the different geometric elements that play a role in a
typical example of maximal workspace calculation. All these elements are
put together in a single list. The algorithm then proceeds by calculating the
intersection between all pairs of element of the list. We note that this stage
implies the calculation of the intersection of the coupler curves of two 4-bar
mechanisms: a solution to this problem was presented by Innocenti (271).
After having calculated the intersection points, we consider each element of
the list and its component between two successive intersection points. The
third stage consists in determining what components belong to the bound-
ary. For each component, we determine whether it is part of the boundary of
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Figure 7.7. All the geometric elements that play a role for maximal workspace calcula-
tion: we have circles which are obtained when a link has a length at an extremum and
sextics that we get when two links are at an extrema. We will have to calculate all the
intersection points between these elements

the maximal workspace by taking an arbitrary point on the component (for
example its middle point). We then compute the inverse jacobian kinematic
matrix at this point, the unit normal vectors N1,N2 of the component at
this point together with the joint velocities that correspond to a cartesian
velocities of the end-effector directed according to N1,N2. The signs of the
joint velocities that are obtained allow us to conclude whether the compo-
nent belongs to the boundary or not. A component of the boundary will be
such that a displacement along the outward normal will lead to a violation
of the constraints on the lengths, whereas a displacement in the opposite
direction will not violate these constraints. For example, for the component
of the sextic corresponding to ρ1

max, ρ2
max, if the joint velocities ρ̇1, ρ̇2 are

both positive for the normal N1 (and therefore negative for N2), then the
component belongs to the boundary, since a motion according to N1 would
lead to an increase of lengths ρ1, ρ2, which already are at their maximum.
We consider, for example, the planar robots with dimensions defined in
figure 7.8; figure 7.9 presents their maximal workspace. It must be noted
that we get a zone Z which may be split by arcs of sextics into connected
sub-zones Z1, Z2, . . .. According to the initial assembly mode of the robot,
the actual maximal workspace will be either the zone Z or will be reduced
to the sub-zone Zi in which the initial assembly mode is located.

7.3.5. INCLUSIVE ORIENTATION WORKSPACE

It may also be interesting to calculate all the locations of the reference point
that may be reached by the robot with at least one orientation within a
given interval. The maximal workspace that we presented in our last section



226 CHAPTER 7

F (c3, d3)

C(c2, 0)
x

y

A(0, 0)

Φ

θ

B(x, y)

D

E

l1
l3

l2

ρ2

ρ1

ρ3
Robot 1 2 3

l1 25 20.839 25

l2 25 17.045 25

l3 25 16.54 25

c2 20 15.91 20

c3 0 0 10

d3 10 10 17.32

θ 60 52.74 60

Figure 7.8. Notation for planar robots
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Figure 7.9. On the left, maximal workspace of robot 1, when the links have a length
within [2,8], [5,25], [10, 25]. On the right and in bold, maximal workspace of robot 3
when the links have a length within [5, 20], [5, 20], [5, 20]. The dotted areas represent
constant orientation workspaces for various orientations.

is only one particular case of this, with an interval of [0, 2π].
We assume that the reference point is B3. As for the principle, the

algorithm for calculating this workspace is similar to the previous one. We
can determine whether a point is situated within this workspace, since we
can calculate the possible orientation angle intervals for each point. We have
to check only whether the intersection of these intervals and the orientation
interval is not empty.

The second stage is different, since for determining the components
we consider not only the intersection points but also those for which the
orientation is equal to one of the extremities of the orientation interval;
note that for each element of the list, there is only one platform orientation
for a given position of B3 on the element.
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The third stage consists in determining whether the component belongs
to the boundary. We therefore test whether a displacement along the normal
to the component leads to a violation of the constraints on the lengths, and
also test whether the orientation of the middle point actually belongs to the
orientation interval. Figure 7.10 presents workspaces that are calculated for
various orientation intervals.

0-20
0-60 0-100

0-305 0-321 0-325

Figure 7.10. Inclusive orientation workspaces for different orientation intervals for robot
1 (links lengths [2,8], [5,25], [10, 25])

7.3.6. TOTAL ORIENTATION WORKSPACE

The total orientation workspace consists of all the locations of the reference
point that may be reached by the robot with all possible orientations within
a given interval [θi, θj ]. The dextrous workspace is an example of total
orientation workspace, the interval being [0, 2π].

We can determine whether a point belongs to this workspace: we need
only calculate the orientation intervals that are allowed at this point, and
to check that one of these intervals contains the orientation interval. For
a point on the boundary of the total orientation workspace, a link of the
robot will have an extreme length. Clearly, at least one link must have an
extreme length, but two or three of them cannot have extreme lengths at
the same time, as in that case the orientation of the manipulator would be
unique.

A point may be on the boundary of the workspace because one of the
ends of the interval which gives the possible orientations at this point cor-
responds to one end of the orientation interval θi, θj . For a given orienta-
tion of the platform, when point Bi moves on one of the circular bound-
aries Gi of the annular regions, the point B3 moves on the correspond-
ing circle of the annular region obtained by translating the first by the
vector BiB3; vector BiB3 is constant since the orientation is fixed. For
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each extremity θi, θj of the orientation interval, we thus obtain 6 circles
as potential boundary elements, i.e. a total of 12 circles. Their centers
and radii are (A3,ρ3

max),(A3, ρ
3
min), (A1 + B1B3, ρ1

max),(A1 + B1B3, ρ1
min),

(A2 + B2B3, ρ2
max), (A2 + B2B3, ρ2

min).
A point may also lie on the boundary of the workspace because for an

orientation θ in the interval [θi, θj ], one of the links reaches an extreme
length. As the point belongs to the boundary, the circular arc with center
B3, radius ||B3B1||, and angle |θi − θj|, which is described by B1 when
the orientation of the platform varies between θi and θj, must be included
within G1; furthermore this arc will be tangent to this region at one point,
for example to the circle with radius ρ1

max (figure 7.11). This tangency

ρ1
max

A1

||B1B3||

B3

Figure 7.11. The point B3 may belong to the boundary of the total orientation workspace
if the arc of circle described by the point B1 when the end-effector rotates around B3 with
an angle from θi to θj is included in the annular region G1 of point B1, and is tangent at
some point to one of the circles of the annular region.

implies that in this configuration B3 is located on a circle with center A1,
and radius ρ1

max −||B1B3||. This therefore introduces the circles, with cen-
ters and radii given below, as potential elements of the workspace bound-
ary: (A1, ρ

1
max − ||B1B3||), (A1, ρ

1
min − ||B1B3||), (A2, ρ

2
max − ||B2B3||),

(A2, ρ
2
min − ||B2B3||), i.e. 4 extra circles. The total orientation workspace

is then obtained as the intersection of the 16 circles. Figure 7.12 presents
examples of total orientation workspaces.

7.4. 3−UPU manipulator

We consider a translational 3−UPU robot. Given a range for the stroke
of the prismatic actuator, the location of the Bi point is a spherical shell
centered at Ai as seen in figure 7.1. As the orientation of the end-effector is
constant, point C lies inside a similar spherical shell centered at Ai +BiC.
The workspace of the robot is thus the intersection of three spherical shells.
We will detail the calculation of this intersection in the next section.
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Figure 7.12. Examples of total orientation workspaces for robots 1 and 2. The maximal
workspace is shown in bold.

7.5. 6−UPS manipulator

We now consider a 6−UPS, and examine the various types of workspaces2.
Other examples, such as the Hexa robot, are presented in the exercises,
while Bonev (45) presents an extensive study of workspace calculation for
6−PUS robots.

7.5.1. CROSS-SECTIONS OF THE CONSTANT ORIENTATION
WORKSPACE

The general calculation principle presented in section 7.2.1 was applied for
the 6−UPS robot first by Gosselin (188) and is used here to examine the
possible displacements of the joint centers on the moving platform. We
note that points Bi are located within the volume bounded by the two
concentric spheres centered at Ai, having radii which are the maximal and
minimal link lengths.

The intersection of this volume with the cross-section plane will there-
fore be either an empty region (and the workspace will then also be empty),
or a region that is bounded by one or two concentric circles i.e. an annu-
lar region. The zone that is allowed for C with respect to link i is then
obtained by translating this region by the vector BiC. If all the links are
taken into account, the intersection of the plane and the workspace is a re-
gion that corresponds to the intersection of 6 annular regions. Figure 7.13
presents two examples; for simplification we have limited the number of
annular regions to 3. Consequently the boundary of a cross-section of the

2Most of the algorithms described in this section are available by anonymous ftp,
directory coprin/Workspace/Gough
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Figure 7.13. In bold, the boundary of a constant orientation workspace in a plane. The
boundary is obtained as the intersection of 3 annular regions.

workspace will be constituted of circular arcs. This structure leads to a
rapid determination of the boundary of the workspace without having to
rely on a discretisation method. It will also allow us to calculate the area
of a cross-section of the workspace.

Such an approach however takes into account only the limits on the
joint coordinates. We will see that this method may be generalized so that
it may also consider the other factors having an influence on the workspace.

Note that sometimes it may be interesting to approximate the bound-
aries of the region described by Bi by polygons, to obtain a rapid first
estimate of the workspace as the intersection calculation is easier.

Figure 7.15 shows cross-sections of the workspace in a horizontal plane
for INRIA left hand, for which the stroke of the linear actuators is 3 cm,
when the rotation matrix is the identity. The shape and area of the cross-
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Figure 7.14. Horizontal cross-sections for various zc of the workspace for INRIA left
hand with an orientation defined by ψ = 30◦,θ = φ = 0◦.

section are very sensitive to the orientation angles. Figure 7.14 presents new
sections for an orientation defined by the Euler angles ψ = 30◦, θ = φ = 0◦.
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Figure 7.15. Horizontal cross-sections for various zc of the workspace for INRIA left
hand with rotation matrix R = I3.

7.5.2. 3D CONSTANT ORIENTATION WORKSPACE

The workspace may also be calculated directly as a volume, although this
is more complicated. Thus, for the 6−UPS robot, we will have to calculate
the intersection of volumes that are limited by two concentric spheres, as
noted by Gosselin (193). Calculation of this intersection is carried out in
the following manner:

− calculate the intersection circles of each pair of spheres among the 12
spheres that bound the volumes.

− calculate the intersection of all of the previous circles which belong to
one same sphere.

− determine the various circular arcs for each intersection circle, as de-
fined from the intersection points at the previous stage

− test each arc to determine whether it belongs to the boundary of the
workspace or not. This is done by considering the middle point of each
arc and checking whether the constraints are satisfied for this location.

The 3D graphical representation is obtained by drawing the circular arcs
that do belong to the boundary. Figure 7.16 presents an example of 3D
workspace.

7.5.2.1 Workspace area and volume
It will generally be easy to calculate the area of a cross-section of the
workspace with the help of the analytical description of the boundary, or
by using a polygonal approximation if necessary. For the 6−UPS robots,
we may apply Gauss’s divergence theorem that gives the area A of a planar
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Figure 7.16. 3D workspace for INRIA left hand (ψ = θ = φ = 0◦).

cross-section by

A =
1
2

∫
∂Ω

s · nd∂Ω (7.1)

where ∂Ω represents the boundary of the region, s the position vector of an
arbitrary point on ∂Ω and n the normal unit vector that is oriented toward
the exterior of the surface delimited by the curve ∂Ω. As the workspace is
here defined by a list of circular arcs, we may write equation (7.1) as

A =
1
2

Na∑
i=1

Ai , (7.2)

with
Ai =

∫
∂Ωi

s · nd∂Ωi , (7.3)

where Na represents the number of arcs constituting the boundary, and
∂Ωi is the i-th arc. If the arc has center with coordinates [h, g], and radius
r, and if its extremities are defined by the angles θ1 and θ2, we may then
express s and n by

s =
[
h
g

]
+
[
r cos θ
r sin θ

]
, (7.4)

n =

⎧⎪⎨
⎪⎩

[cos θ, sin θ]T , if the arc is on the external boundary ,

[− cos θ, − sin θ]T , if the arc is on an internal boundary .
(7.5)

We then obtain

Ai = hr[sin θ2 − sin θ1] + gr[cos θ1 − cos θ2] + r2[θ2 − θ1] , (7.6)
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for an external arc and, for an internal arc

Ai = −hr[sin θ2 − sin θ1] − gr[cos θ1 − cos θ2] − r2[θ2 − θ1] (7.7)

Calculation of the workspace volume may be easily obtained from the
area of cross-section by assuming that the volume varies linearly between
two cross-sections if the distance between the two cutting planes is small
enough. Figure 7.17 presents the variations of the volume of the workspace
according to the actuator strokes. It seems that the volume is approximately
proportional to the cube of the stroke, as conjectured by Masory (385). Such
a conjecture is reasonable, as if the stroke is very large, the workspace will
be approximately a sphere whose radius will be the stroke.
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Figure 7.17. On the left, the volume of the constant orientation workspace for INRIA
left hand as a function of the stroke of the actuators (in thin lines). The dotted lines
represent the degree 3 polynomial that approximates this variation. On the right, the
volume of the constant orientation workspace as a function of the ratio (radius of the
platform)/(radius of the base).

Figure 7.17 shows the volume of the workspace according to the ratio
between the radius of the platform and the radius of the base. We notice
that this volume is maximal if the radius of the platform is approximately
identical to the radius of the base.

7.5.2.2 Mechanical limits on the joints
This section will generalize the method presented in the previous section
to include mechanical limits on the passive U,S joints. Our aim is to model
the mechanical limits geometrically so that we can use it for workspace
calculation and to allow flexibility in the modeling. We will first examine
how the constraints on the joints that are attached to the base may be
modeled.
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7.5.2.2.1 Model for the mechanical limits
The mechanical limits may be defined by a surface that bounds the

volume in which the axis of the link that is connected to the joint must be
situated. For an U joint, this surface is usually quite complicated. For an S
joint, classical commercially available joints have a range of motion that is
restricted by a cone. But many robots use a combination of U and R joints
that offer a larger range of motion. Hence we have to look for a model
that is flexible enough to deal with all cases, while sufficiently simple to
enable the calculation. An appropriate model for this surface is a pyramid
with an appropriate number of planar faces. Indeed this model offers a
high flexibility: for example a cone may be approximated in a conservative
way by a pyramid with many faces. On the other hand, the pyramid model
allows for a very simple workspace constraint surface which is a polyhedron
(or a polygon if we have to calculate a cross-section). Note that this model
allows us to deal with an U joint having skew axes, a topic addressed by
Pernkopf (473).

For a given joint we have therefore to define this pyramid according to
the constraint on the joint. We define a reference frame (Ai,xr,yr, zr) that
is attached to the pyramid with apex Ai (figure 7.18). Each face is defined
by the unit vector ni normal to the face.

Figure 7.18. A pyramid with planar facets that models the constraints on the joint at
Ai. In this example the pyramid is an approximation to a cone. Each face i is defined by
its normal vectors ni. If the constraints on the joint are satisfied, the segment AiBi must
lie in the interior of the pyramid.

7.5.2.2.2 Possible locations of the centers of the joints
We assume that an analysis of the parallel robot has allowed us to es-

tablish that the points Bi are located within a volume Va if the constraints
on the joint coordinates are satisfied. The intersection of this volume with
the pyramid then defines the volume for point Bi for which the constraints
on the joint coordinates, as well as the constraints on the passive joints, are
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satisfied. If we look only for cross-sections of the workspace, we will first
have to calculate the intersection Pa of Va with the cutting plane, then the
intersection Pp of the pyramid with the cutting plane (i.e. a polygon). The
allowed region for point Bi is then the intersection of Pa with Pp. Having
determined the possible zones for the Bi, we obtain, by a simple transla-
tion, the allowed zones for C, the workspace then being the intersection
of these zones. For example, we saw that for a 6−UPS robot, the zones
Pa are annular regions. The intersection of Pa with Pp will thus be a geo-
metrical object, the boundary of which will be constituted of segments and
circular arcs; this is commonly called a generalized polygon. The workspace
is obtained as the intersection of 6 generalized polygons; this is easily cal-
culable (402). Figure 7.19 shows a 3D representation of the constraints on
the location of the Bi, either due to the constraints on the lengths, or the
mechanical limits on the joints attached to the base.
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6

x

y

z

x

y

Figure 7.19. On the left, the possible zones for the points Bi. The pyramids are shown
in dots. On the right, the constraints, seen from above: the blank circles correspond to
the external circles, the grey circles to the internal circles, and the squares to the zones
that are due to the mechanical limits on the joints attached to the base.

Figure 7.20 shows the possibly important influence of the mechanical
limits on the passive joints: the workspace volume of INRIA left hand is
drawn according to the constraints on the length of the linear actuators
with and without taking the mechanical limits on the joints into account.

7.5.2.2.3 Joints on the moving platform
For the constraints on the joints attached to the moving platform we

may choose the same model as the one we used for the joints attached to
the base. We may therefore define a pyramid Pi with apex Bi and which is
such that if the constraints on the joint are satisfied, the segment line BiAi

will be located inside the pyramid. We may then define a pyramid that will
be called equivalent to Pi, P ,

i , with apex Ai situated so that if Ai is inside
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Figure 7.20. The thin lines represent the workspace volume according to the constraint
on the links lengths, without constraints on the passive joints. The dotted line shows the
same volume when the constraints on the joints are modeled by a 4 faced pyramid.
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Figure 7.21. On the left, definition of the pyramid that characterizes the constraints on
the joints at Bi. Point A1 is located inside the pyramid if the constraints are satisfied.
On the right, definition of the equivalent pyramid (in dotted lines).

Pi then Bi is inside P ,
i (figure 7.21). This is therefore similar to having a

new joint at Ai and the previous workspace calculation can be used.
To illustrate the workspace calculation, we consider the example of a

robot developed by Arai (14) at MEL in Tsukuba, whose joints at Ai are
situated underneath the base, while the links come out of a square open-
ing. It is hence possible to model the constraints on these joints by 4 face
pyramids. We show views of the constant orientation workspace, first tak-
ing into account only the limits on the link lengths, and then, for the
same orientations, taking the constraints on the joints into account. We
see that the constraints on the joints noticeably influence the workspace
(figures 7.22); the working volume decreases roughly by a factor of 6. Ma-
sory (385) mentions that the volume of the workspace is maximal if the
main axes of the joint have the same directions as the links when the robot
is in a nominal position in which the actuators are at mid-stroke. As a
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matter of comparison, figure 7.23 presents the half workspace of the INRIA
left hand calculated with Maple, taking into account only the limits on the
link lengths, and then, for the same orientations, taking the constraints on
the joints into account. With the geometrical approach, such calculation
is almost instantaneous, while several minutes are needed by Maple. Fur-
thermore the geometrical method provides a very compact result on which
calculation like area or volume are easy while the result provided by Maple
is large and not very appropriate for volume calculation.

Figure 7.22. View in perspective of the Arai robot workspace, orientation
ψ = θ = φ = 0◦. On the left, the constraints are the links lengths, while on the right the
mechanical limits of the passive joints are also taken into account.

Figure 7.23. View in perspective of INRIA left hand half workspace, orientation
ψ = θ = φ = 0◦, as computed with Maple. On the left, the constraints are the links
lengths, while on the right the mechanical limits of the passive joints are also taken into
account. A large scaling on the z axis has been applied for better visibility

7.5.2.3 Interference between links
The last limiting factor for the workspace is the risk of interference between
the links. We will consider a 6−UPS robot.

7.5.2.3.1 Notion of distance between links
To take link interference into account, we will consider the locations

within the workspace for which the minimal distance between any pair of
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points on two separate links is equal to a constant d; this is called the safety
distance. We will assume that this distance is smaller than the minimum
of the distances between the pairs (Ai, Aj), (Bi, Bj) of the pair of links i, j.
Without loss of generality, we will consider the particular couple of links 1
and 2. Such an approach will allow us to deal with the case of interference
between cylindrical links. Indeed, if we impose as safety distance the sum
of the radii of the cylindrical links, and if we are able to determine the
poses for which the distance between the pair of links is equal to the safety
distance, then we will have determined the poses for which the cylindrical
links interfere.

We will say that all links are at a safe distance, if the distances between
all the pairs of links are greater than or equal to their safety distance.
To calculate the distance between two line segments, there are different
cases that have to be considered (figure 7.24), detailed in (402). Each of
these cases may be distinguished by inequalities that are functions of the
pose parameters. Strictly speaking, the above distance between links is

A1 A2

B1 B2

A1 A2

B1
B2

A1
A2
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A1
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B1

B2 A1

A1

A2

A2 B1
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B2

B2

B1 A1

A2

B2

Figure 7.24. In bold, the minimal distance between two links.

conservative for cylindrical legs: it may be seen on the right of figure 7.24
that the distance between 2 links may be lower than the sum of the radii,
even though while the corresponding cylinders do not intersect. But such
cases will not occur in general for parallel robots.

7.5.2.3.2 Interference loci
Using the notion of distance between links, we may determine the loci

of C where the distance between one pair of links is equal to the safety
distance. If we consider only horizontal cross-sections of the workspace,
these loci are conics that divide the plane into zones, where the distance
between links is either greater or smaller than the safety distance (402).
We need to calculate the zones for each pair of links, for which the distance
between links is greater than the safety distance, and then calculate the in-
tersection of these zones to obtain the workspace for which the interference
between links is taken into account. Figure 7.25 presents a few examples
of workspaces with and without constraints on mechanical limits on the
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joint attached to the base, as well as with and without taking interference
between links into account.

Figure 7.25. Constant orientation workspace determination. The conics that appear
when taking into account the interference between the links are shown in dots: in these
particular cases we obtain hyperbole and degenerate conics i.e. two parallel lines. The
workspace, taking the interference between links into account, is represented in bold, and
with thin lines when the interference between links is not taken into account.

7.5.3. ORIENTATION WORKSPACE

We have already seen that representing an orientation workspace in a way
that has a physical meaning is difficult. In addition, most of the methods
presented in the literature rely on a discretisation approach (46).

We propose an algorithm that allows us to represent only 2 orienta-
tion d.o.f. of a 6−UPS robot, but that uses discretisation only for one of
them. This algorithm will be especially suitable for the representation of
the orientation abilities of a 5 d.o.f. robot.

We suppose that point C of a 6−UPS robot is fixed in the reference
frame. We consider a unit length link CNe which is attached to the moving
platform at C. When the moving platform rotates around C, the extremity
Ne of the link moves on the unit sphere centered at C. Hence by representing
the regions of the unit sphere where the end of the link may be located,
we characterize two rotary degrees of freedom of the manipulator. Only
the rotation around the link axis is not illustrated. By a careful choice of
the direction of the link we may obtain all the allowed rotations for the
end-effector around two perpendicular axis.

We first assume that the moving platform rotates through an angle
θ1 around a vector X1 fixed in the reference frame. Once the platform is
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in this position, we look at the possible rotation around a vector X2 in
the reference frame. For a fixed value of θ1, and if the manipulator is not
submitted to any constraint, the extremity Ne describes a circle Ce on the
unit sphere (figure 7.26). The constraints on the manipulator are actually

x
y

z

Ne

y

θ1

O

C

Figure 7.26. Orientation representation: the platform first rotates through an angle θ1

around the x axis, thus X1 = [1, 0, 0]. When the platform rotates around the z axis, i.e.
X2 = [0, 0, 1], Ne describes a circle, drawn with dotted line, on the unit sphere.

such that Ne has to lie only on some circular arcs which are part of the circle,
and we have shown that these circular arcs may be calculated exactly (403).
By using regularly spaced values for the angle θ1 in a range of diameter π,
we may span the whole unit sphere, and obtain the possible regions for Ne

on it. Figures 7.28, 7.27 show examples of orientation workspaces.

7.5.4. DEXTROUS WORKSPACE

Determination of the dextrous workspace may be carried out with the same
type of algorithm as for planar robots. With respect to the constraint im-
posed by leg i the possible locations of C, if they exist, are located in
the spherical annulus CSi with center Ai and internal and external radii
ρimax − ||CBi||, ρimin + ||CBi|| (figure 7.29). Indeed, in these poses for C,
Bi may freely rotate around C while respecting the leg length constraint.
Note that CSi exists only if ρimax − ρimin ≥ 2||CBi||.

The dextrous workspace, if it exists, is the intersection of the 6 zones
CSi. We could also consider the mechanical limits on the joints; we would
have to find the intersections of the spherical region and the pyramids.

7.5.5. MAXIMAL WORKSPACE

There are many calculation methods that have been proposed for the
calculation of the maximal workspace. The method proposed by Adkins
and Haugh (221) may in theory calculate the boundary of the maximal
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Figure 7.27. Orientation workspace. Representation of the allowed zones for the normal
to the moving platform, for rotations around the x axis followed by rotations about the
z axis. The constraints are the links lengths, the mechanical limits of the joints attached
to the base and the interference between the links.

Figure 7.28. The allowed zones for axis −yr of the moving platform for the rotations
around the x axis with an angle in the interval [π/2-3π/2] followed by rotations around
the z axis. On the left, only constraints on the link lengths are taken into account, while
on the right, interference between links is considered; some rotations satisfying the lengths
constraints are actually impossible because of the interference between the links.

workspace but is complex, and these authors use it just for the calcula-
tion of the constant orientation workspace. A very rough approximation of
maximal workspace of a 6 d.o.f. robot was proposed by Kim (311).
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ρmax

ρmin

||CB1||

||CB1||

Figure 7.29. The dextrous zone allowed for C, only taking the constraints on link i into
account.

Interval analysis is an appropriate tool for computing an approximation
of the maximal workspace. The algorithm is briefly presented in the interval
appendix and detailed in (411). For a robot with n d.o.f., the output of
the algorithm is a list L1 of n-dimensional boxes that are included in the
maximal workspace, and another list L2 of boxes that may include poses of
the maximal workspace. The minimal width w2 of the boxes in L2 is fixed
in advance and determines the quality of the approximation. The maximal
workspace volume is greater than or equal to the total volume of the boxes
in L1 and less than of equal to the total volume of the boxes in L1,L2. The
quality of the approximation may be improved incrementally: the starting
point is the list L2 obtained for a given value of w2, and the calculation is
restarted with a smaller value of w2. The result will be new boxes included
in the maximal workspace, and a lower total volume for the boxes of the
new L2.

Figure 7.30 presents cross-sections of the maximal workspace of INRIA
left hand for z = 50 with various accuracies. Note that this algorithm may
be generalized to deal with inclusive or total orientation workspace. For
example figure 7.31 presents an inclusive orientation workspace of INRIA
left hand for z in [50, 60], the orientation interval being [0, 20]. This algo-
rithm may also be appropriate for computing a reduced total orientation
workspace as, for example, the location of C for which the normal of the
platform should be able to be in any position in a cone (607).

7.5.6. WORKSPACE FOR MACHINE-TOOL

One main interest of the reduced total orientation workspace lies in the field
of machine-tools, where only five-axis motions are required; the rotation of
the platform around its normal is ensured by the spindle. In that case the
yaw angle θ will define the angle between the spindle axis and the z axis, and
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Figure 7.30. Cross-sections at z = 50 of the maximal workspace with accuracy 0.84,
0.42 (the accuracy is defined as the distance between the center of a box and a vertex).
The black area lies completely in the workspace.

Figure 7.31. Inclusive orientation workspace of INRIA left hand for z in [50, 60], the
orientation intervals are [0, 20].

its limit will indicate the maximal tilting angle of the spindle. Huang (241)∗
assumes that φ is equal to −ψ, and defines various workspaces:
− minimum reachable yaw angle for a given point: for a given C this is

the minimum value of θ for any value of ψ in [0, 2π]
− position-orientation workspace: all the locations of C together with

their minimum reachable yaw angle
Huang shows that the minimum reachable yaw angle for a given point may
be calculated exactly if we consider constraints on the legs lengths, and as-
sume that the mechanical constraints on the passive joints may be modeled
by a cone. For the calculation of the position-orientation workspace, Huang
uses a discretisation method. Similar workspace definition and assumption
on the value of φ have been introduced by Wang (607). A more rigorous
calculation based on interval analysis has been proposed by Pott (483) for
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the 6−PUS robot. The choice of imposing φ = −ψ may not lead to the
largest value of θ. To show that a better choice for φ is possible we consid-
ered the INRIA left hand, assuming that the smallest and largest lengths
are 50, 57, and computed the largest possible θ angle by assuming first
that φ = −ψ and then allowing any value of φ in the range [0, 2π]. In the
first case we found out that θ will lie in the range [-29,29] degree, while in
the second case the range is [-31.261,31.261]. The increase in the maximum
tilting is therefore significant (about 7.22%). With interval analysis it is
possible to design an algorithm that allows us to increase the minimum
reachable yaw angle for a fixed location of C by allowing us to adjust the
φ angle (see exercise 7.12), or compute a larger translation workspace for
a given maximum tilting angle.

7.5.7. COMPARISON BETWEEN ARCHITECTURES

We will now examine the influence of the joint layout on the workspace
volume. We will consider a MSSM, a TSSM and a SSM of similar dimensions
and with the same minimal and maximal leg lengths; these are the only
workspace constraints we will consider. We will also consider the MSP
robot presented by Stoughton (555): this robot presents a crossed layout of
joint centers obtained by using an optimization process in which the cost
function was a weighted sum of the workspace volume and the dexterity,
the dexterity having a larger weight than the workspace volume.

Table 7.1 indicates the volume of the constant orientation workspace
for different orientations of the moving platform. The SSM has the larger
workspace, followed by the TSSM and then the MSSM. It must be noted
that the workspace volume of the SSM is always approximately 30 % greater
than that of the TSSM. Similarly the SSM volume is 70 % greater than that
of the MSSM, thus the TSSM volume is approximately 25 % greater than
that of the MSSM. The MSP has a workspace volume which is somewhat
smaller than the MSSM, and much smaller than that of the SSM, as claimed
by Stoughton.

A similar comparison can be made between the maximal workspaces.
Here we are able to compute only an approximation to the maximal work-
space (see section 7.5.5). The volume of the approximation of the maximal
workspace is Vc with an error margin that is [0, Vn]. Table 7.2 indicates
the volume of the maximal workspace for the four different robots, the
error margin, and the minimal and maximal ratios between the different
workspace volumes.

According to these results it is clear that joint layout is important for
the workspace volume: for example the volume for the SSM is about twice
the volume of the MSP; this factor may be slightly reduced if we consider
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Orientation (ψ, θ, φ) MSP MSSM TSSM SSM TSSM
MSSM

SSM
MSSM

SSM
TSSM

0,0,0 861 950 1214 1576 1.277 1.659 1.298

0,5,0 748 766 968 1271 1.264 1.659 1.313

5,0,0 765 924 1177 1529 1.274 1.655 1.299

5,5,0 685 749 947 1245 1.264 1.662 1.315

5,5,5 613 706 894 1180 1.266 1.671 1.32

0,10,0 502 434 542 745 1.249 1.716 1.374

10,0,0 670 848 1082 1406 1.276 1.658 1.299

10,10,0 405 412 522 720 1.267 1.748 1.379

10,10,10 355 363 468 661 1.289 1.821 1.412

TABLE 7.1. The volume of the constant orientation workspace for various orientations

SSM TSSM MSSM MSP

Volume 7848+[0,1950] 5182+[0,1174] 4144+[0,750] 3524+[0,615]

Ratio
TSSM
MSSM

SSM
MSSM

SSM
TSSM

TSSM
MSP

SSM
MSP

1.0587-1.534 1.603-2.364 1.235-1.89 1.22-1.9 1.896-2.78

TABLE 7.2. The volume of the maximal workspace, the maximal error, the
minimal/maximal ratios of the maximal workspace volumes for the four robots.

the mechanical limits on the joints.

7.6. Workspace performance indices

Various indices may be used to characterize the workspace of parallel robots.
The most used is the workspace volume, which causes a unit problem if the
d.o.f. of the robot mix translations and orientations. Other indices have
been proposed, such as the workspace volume index, the ratio between
the workspace volume and the volume of the robot. For planar robots,
Heerah (224) proposes the ratio between the footprint area and maxi-
mal workspace area, and compares possible architectures using this ratio.
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Liu (375) geometrically studied a few limit poses for the TSSM that may
be used to characterize a robot workspace: highest, lowest and most tilted
position. He established their values from the robot geometry, and from the
limits on the lengths of the links. For a Delta robot Stock (553) defines a
space utilization index that reflects the ratio of the workspace size to the
physical size of the robot.

7.7. Trajectory verification

The purpose of trajectory verification is to determine if a given trajectory
may be performed by a parallel robot. A necessary condition for a trajectory
to be valid is that it lies within the workspace of the robot. But other
criteria may have to be checked, either related to the robot performances
(singularity, accuracy, . . .) or to the surrounding (e.g. obstacle avoidance).
In this section we will focus on necessary conditions, although some other
criteria will be mentioned.

7.7.1. LINE SEGMENT VERIFICATION

A basic problem in trajectory verification is to check whether a trajectory
defined as a line segment for C and a constant orientation of the platform
lies completely in the workspace or not. We limit our study to 6−UPS
robots but the proposed approach may be extended to other robots as
well3.

If M1,M2 are the beginning and end points of the trajectory, then for
any C lying on the trajectory we have

OC = OM1 + λM1M2 with λ ∈ [0, 1] . (7.8)

7.7.1.1 Constraints on the link lengths

Let us calculate a length of a link for any point on the trajectory between
M1 and M2. We have

AB = AO + OC + CB , (7.9)

where CB = RCBr is a constant vector. The length ρ of a link is given by

ρ2 = ||AO||2 + ||OC||2 + ||CB||2 + 2(AO + CB).OC + 2OA.CB (7.10)

Using equation (7.8) we obtain

ρ2 = λ2||M1M2||2 + 2λ(AM1 + CB).M1M2 + ||AM1 + CB||2 . (7.11)
3The algorithms described in this section are integrated in the workspace calculation

software, available by anonymous ftp, directory coprin/Workspace/Gough
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We therefore have an equation of the type ρ2 = aλ2 + bλ + c , where a, b, c
are coefficients that depend only on the trajectory and the geometry of the
robot:

a = ||M1M2||2 b = 2(AM1 + CB).M1M2 c = ||AM1 + CB||2

We note that a > 0, c > 0, a + b + c > 0. We now look at the equation

aλ2 + bλ + c − ρ2
max = 0 (7.12)

Let f(λ) = ρ2(λ)− ρ2
max be the left-hand term of this equation. If equation

(7.12) has no real root, and since a > 0, then f(λ) will be positive for all λ.
Consequently the lengths of the link will be larger than the maximal length
for any point on the trajectory and the trajectory will not be feasible.

We now assume that the equation has two real roots x1, x2 with x1 ≤ x2.
Since a > 0, f(λ) will be positive in the intervals ] −∞, x1[, ]x2,+∞[. The
intersection of these intervals with the interval [0, 1] will give the intervals
of λ (i.e. the components of the trajectory) where the length of the link is
larger than the maximal length (note that it is easy to prove that if the leg
lengths at M1,M2 are lower than ρmax, then this will be the case for any
point between M1,M2, see exercise 7.13). Repeating this algorithm for the
6 links enables us to find the parts of the trajectory where at least one of
the links has a length which is larger than its maximal value i.e. the parts
of the trajectory that are not feasible. We now look at the equation:

aλ2 + bλ + c − ρ2
min = 0 (7.13)

Let g(λ) = ρ2(λ)− ρ2
min be the left-hand term of this equation. If equation

(7.13) has no real roots, and since a > 0, then g(λ) is positive for any λ
and the length of the link for any point on the trajectory is larger than
the minimal length. Let us assume that the equation has two roots x1, x2

with x1 ≤ x2. Since a > 0, g(λ) will be negative in the interval ]x1, x2[
and the intersection of this interval with the interval [0, 1] will give us
the interval where the length of the link will be lower than the minimal
length. Repeating this algorithm for the 6 links we can find the parts of the
trajectory where at least one of the links has a length which is lower than
its minimal value.

In summary, combining the procedures for f(λ), g(λ), we are able to
determine not only if a trajectory is feasible but also which parts are not
feasible and which constraints are violated.

Analyzing these equations more thoroughly, we can obtain simplifying
rules that sometimes allow us to check the feasibility of the trajectory
directly without having to analyze the intervals (see exercises and (401)).
It is possible also to determine the changes to be made to the extremal
lengths of the links so that the trajectory will be feasible. Determining such
changes will generally be possible for all the considered constraints (401).
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7.7.1.2 Mechanical limits on the joints
As in the section dealing with workspace calculation, we assume that the
mechanical limits on the passive joints may be modeled by a pyramid with
planar faces and apex Ai.

Let ni be the external normal to face i of the pyramid that is associated
with the joint at A. If point B is located on the inner side of face i we
should have

AB.ni ≤ 0 (7.14)

Using equation (7.8) we obtain

λM2M1.ni + (OM1 + AO + CB).ni ≤ 0 (7.15)

As this is a linear equation in λ we may easily calculate the intervals for λ
in [0,1] for which equation (7.15) is not satisfied.

The intersection of the interval so obtained with the interval [0, 1] will
give the components of the trajectory where the constraints on the base
joints are not satisfied. This algorithm will have to be used for the faces of
all the pyramids that are associated with the joints.

In conclusion we note that we can take the intersections between links
into consideration under the same hypotheses as for workspace calculation.

7.7.1.3 Example
The computation times for the above algorithms are extremely low; this
allows us to consider a real-time use of the method. Figures 7.32,7.33 show
a few trajectories for the Arai robot (14); the forbidden components of the
trajectories are indicated.
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Figure 7.32. Trajectory verification examples: for the trajectory the forbidden com-
ponents are shown in dots, while the allowed components are in bold. The workspace
boundary is drawn in thin lines.



WORKSPACE 249

x

y

S

G

Figure 7.33. Trajectory testing examples: on the left, the boundary of the workspace
where there is no interference between the links is shown in bold. For the trajectory the
forbidden components are represented by the dotted line.

7.7.2. PARAMETRIC TRAJECTORY VERIFICATION

We now assume that the trajectory is defined by a set of one-parameter
functions, one for each pose parameter. Typically the parameter will be the
time T , restricted to lie in the range [0,1] and we have

xc = fx(T ) yc = fy(T ) zc = fz(T ) ψ = fp(T ) θ = ft(T ) φ = fh(T )

No assumption is made on the nature of the f functions except that they
are continuous. In that case an algorithm based on interval analysis is able
to verify if the constraints on the leg lengths, motion of the passive joints
and eventually leg interferences are satisfied on the whole trajectory. This
algorithm may also check if the trajectory is singularity free, or check any
other constraints that can be expressed (implicitly or explicitly) as functions
of T . Furthermore it may take into account small variations around the
trajectory due to control errors, as well as small errors on the geometrical
modeling of the robot. This algorithm is briefly summarized in the interval
appendix, and presented in more detail in (415).

7.8. Motion-planning

We have already seen in the ”Singularity” chapter methods that allow us
to modify a given trajectory locally to avoid singularities. In this section
we will look at other aspects of motion planning.
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7.8.1. GLOBAL MOTION PLANNING

The purpose of global motion planning is to determine a trajectory that
joins two poses and that satisfy at least the necessary conditions for lying
fully within the workspace of the robot. Harris (219) dealt with motion
planning between two poses, looking for the parameters of the screw mo-
tion linking the two poses, and reckoning that this motion should be able
to minimize the changes in the link lengths. For planar robots, Chablat
and Wenger suggested a motion-planning algorithm which includes the
singularities, and interference between the links and the platforms (79;
617). The use of the condition number in order to manage the path of
parallel robots that are redundant with respect to the task they must per-
form should also be mentioned. Thus, Gosselin and Angeles (190) present
an algorithm, illustrated on both a planar and a spherical robot, that helps
to find the orientation of the robot so that it presents the best accuracy at
some specific poses along the path. Another approach to motion planning is
to specify some precision poses, and to synthesize a trajectory that respects
the robot constraints and is close as possible to the precision poses. Su (556)
considers this approach for parallel robots with 2 to 5 d.o.f. and computes
the trajectory by an optimization method that minimizes the distance to
the precision poses using a dual quaternion metric. The problematic parts
of this approach is clearly the optimization, and the difficulty of introducing
singularity and self-collision constraints.

Motion planning is a classical problem for serial robots in view of avoid-
ing obstacles. In our case workspace boundary, singularities, . . . may be con-
sidered as obstacles to be avoided. Roughly speaking, there are two types of
motion planning methods: potential fields and configuration space methods.
In the first approach an attractive potential is attached to the goal and a
repulsive one to the obstacle. The motion of the end-effector results from
the action of this fields. To the best of our knowledge, this approach has
never been used for motion planning of parallel robots. Our own tests have
shown that the problem of local minima, which is the major problem for
potential fields, is very real for motion planning of parallel robots.

In the configurations space approach, a preliminary step is to deter-
mine a description of the free space, either as a collection of cells (the cell
decomposition approach) or of reachable poses (the roadmaps approach).
Once this description is constructed, a motion planning query consists in
connecting the start and goal poses through cells or reachable poses, a local
planner ensuring the local trajectory between two successive elements.

This approach was initially designed for serial robots with a closed form
for the direct kinematics. Hence the determination of the reachable cells of
poses starts in the joint space, and is then transposed to the task space.
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This approach has been extended to closed chains (583; 630; 631) but a
major difficulty is that a random choice of variables in the joint space
has a zero probability satisfying the closure equations. Furthermore self-
intersection and singularities are usually not considered. The only work
dealing effectively with parallel robots is a probabilistic roadmap approach
proposed by Cortés and Siméon (111). They improve the creation of the
reachable poses of the roadmap by using the structure of the robot, and they
deal with self-collision, and obtain a very efficient planner. But the local
planner does not take into account either singularity or multiple solutions
for the direct kinematics, that may prohibit the use of the trajectory.

We will now present some examples of simple motion planning ap-
proaches.

7.8.1.1 Cell decomposition for planar robots
The workspace of a planar parallel robot may be represented in 3D by using
the parameters xc, yc, θ. We first compute cross-sections of the workspace
for different values of θ using the procedure described in section 7.3.1 (fig-
ure 7.34). We then calculate a polygonal approximation to each cross-

Figure 7.34. Cross-sections of the workspace of robot 1, for various allowed lengths of
the links. Each horizontal cross-section corresponds to a constant orientation workspace
i.e. a fixed value for θ.

section. From these polygonal approximations, we obtain a polyhedral rep-
resentation of the workspace as a set of tetrahedra. Figure 7.35 presents
an example of such a reconstruction. Motion planning consists in looking
for the shortest-path trajectory joining the beginning and end points and
going through the centers of the tetrahedra, using an A∗ algorithm. After
obtaining this trajectory, we use a smoothing stage. Figure 7.36 presents
an example of a trajectory obtained by this method. The interest in this
technique is that it allows us to discover trajectories which may present any
type of orientation control law: linear or polynomial interpolation between
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Figure 7.35. 3D workspace of a planar parallel robot in the x, y, θ space.

Figure 7.36. A trajectory obtained by using the 3D reconstruction of the workspace.
The beginning and end points are indicated on the drawing.

the orientation of the beginning and end poses, etc. 3D reconstruction may
actually be done once and for all, and we can then use it later to generate
any trajectory.

7.8.1.2 Cell decomposition for spatial robots
We will first illustrate the cell decomposition approach on a simple exam-
ple in which the orientation of the end-effector has to be constant, while
the start and end points lie in the same horizontal plane. Under that as-
sumption we know how to calculate the constant orientation workspace, see
section 7.5.1. As we know the boundary of the workspace, we may describe
the interior of the workspace as the union of small square cells, the lay-
outs of which are calculated from the boundary of the workspace. Among
these cells are the two cells which include the beginning and end points of
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the trajectory. We then consider a valued graph with nodes at the centers
of the cells, and linked to adjacent nodes by arcs; any node will generally
have 8 adjacent nodes, less if the cell is on the boundary of the workspace.
The value of the arc joining two nodes is the distance between the nodes if
the node is within the workspace and if the straight line joining the nodes
is inside the workspace. If either of these two conditions is not satisfied,
the value of the arc is assigned an arbitrarily large value. A shortest path
algorithm, such as the A∗ algorithm, will provide a trajectory joining the
beginning and end points and going through the nodes (figure 7.37). The

Figure 7.37. On the left, the A∗ algorithm has allowed to find a trajectory joining the
beginning and end points. On the right, the trajectory obtained after smoothing.

trajectory given by the algorithm may be quite rough because of the algo-
rithm itself’s; but it may easily be smoothed out (figure 7.37).

It is easy to cover the workspace with cells, but there are a few problems:

− the knowledge of the shape of the workspace is only partially taken
into account, as it is used only to limit the number of cells

− we cannot guarantee that a trajectory will be found.

The technique used for planar motion-planning may be extended to space,
either with a constant or non constant orientation. We will use various
horizontal cross-sections; if the orientations at the beginning and end points
are not the same, the orientation for each calculated cross-section may be
obtained by linear interpolation. We tile the volume so obtained with cubic
cells, as shown on figure 7.38. An A∗ shortest-path algorithm may then
be used. We present an example of trajectory determination in figure 7.39.
The number of cells in the spatial case is much higher than in the planar
case; trajectory verification will require much computation time. Such a
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Figure 7.38. Since we know the boundary of the workspace, we may build a tiling of the
workspace based on cubic cells. The boundary of the workspace is represented in bold.

Figure 7.39. A trajectory that is obtained with the help of the A∗ algorithm after
smoothing (in bold, view in perspective). The direct trajectory (the thin line) is partially
outside the workspace

method will not work if the beginning and end points are within the same
horizontal plane, but have different orientations.

7.8.1.3 Roadmaps
The roadmap approach will be illustrated on the same spatial example.
When the interference between links is ignored, the boundary of the work-
space will be made of circular arcs and segments; this constitutes a gener-
alized polygon, as defined by Laumond (344).

We may then use the visibility graph method in order to find the shortest
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trajectory between the two points (344). The visibility graph G between two
points A,B is defined in the following manner:

− A,B and all the boundary convex vertices are nodes of G.
− let X,X ′ be two nodes of G. If the segment joining X,X ′ is completely

inside the workspace and is tangent to the boundary of the workspace,
it constitutes an edge of G.

− let X be a node, and E′ a circular edge of the workspace. If there is a
point X ′ of E′ so that the segment XX ′ is inside the workspace and
is tangent to the boundary of the workspace at X and X ′, then point
X ′ is a node of G and the segment XX ′ is an edge of G.

− let E,E′ be two circular edges of the boundary of the workspace. If
a point X of E and a point X ′ of E′ are located so that the segment
XX ′ is inside the workspace and is tangent to the boundary of the
workspace at X and at X ′ then X,X ′ are nodes of G and the link
XX ′ is one of its edges.

− all the components of the boundary of the workspace joining two con-
vex vertices of the boundary are edges of G.

− two nodes X,X ′ on the same circular edge are joined by an edge of G
if there is no other node of G between X and X ′ on the same circular
edge.

Figure 7.40 presents an example of a visibility graph. The main result is
that if there is a trajectory from node A to node B, there will then be a
trajectory in the graph G between these two nodes, and if a shortest path
exists, this path will be contained in G. An A∗ algorithm may be used to
find this trajectory.

S (-281,-51)

G (-135,263)

Figure 7.40. Planning in the visibility graph. Some of the edges of the graph are shown
in dots, and the trajectory is in bold.
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7.8.2. MACHINE-TOOL MOTION PLANNING AND PART POSITIONING

Machine-tool motion planning may present some specificities, as less than
the n d.o.f. of the machine may be used: for example, for a Gough platform,
the rotation of the planar platform around the plane normal will not be
used as it is not necessary for machining tasks.

We showed in (412) that, for a Gough platform, it was possible to de-
termine ranges for the free d.o.f. to ensure that a given manufacturing
trajectory lies in the workspace. Hence we have still some freedom on the
free d.o.f. to optimize another performance criterion. In (412) we choose to
optimize the stiffness along the trajectory with an average increase between
5 and 25%. Another approach is proposed by Chen (90), who partitioned
the d.o.f. into critical and secondary, and synthesized a control law that
ensured the tracking of the critical d.o.f. while minimizing a velocity based
secondary criterion. In any case, classical CAD systems for machine-tools
are not appropriate to make the best use of the potentiality of parallel
robots, as they generate approximated trajectories whose differences from
the desired trajectory may already amount to 10 to 20 % of the final posi-
tioning errors.

Another aspect of motion planning for machine-tool is part positioning:
being given a machining to be performed the problem is to determine the
positioning of the part so that the machining trajectory will lie within
the machine workspace. This problem, which is more difficult for parallel
robots than for serial ones, has been addressed by Wang (607) with an
optimization method, and by Pugazhenti (490) by discretisation. Note that
part positioning may play a role in medical applications also (613).

7.8.3. PROSPECTIVE FOR GLOBAL MOTION PLANNING

As seen previously, apart from the work of Cortés and Siméon, the works
presented for closed-chain motion planning may not be the most appropri-
ate for parallel robots; they use neither the simple inverse kinematics of
these structures nor the more complex forward kinematics.

However, we have seen in the previous sections that we are able to get
an almost complete description of the full workspace of a parallel robot
with n d.o.f. as a set of n-dimensional boxes. We have also seen in the
”Singularities” chapter that we have an algorithm that allows us to test if
a box is singularity-free. With some effort we believe that it will also be
possible to determine if all poses in a box are self-collision free. We will
thus be able to have a description of the workspace in term of boxes that
satisfy all the constraints. With such a description of the workspace, it will
then be possible to use a classical motion planner. The computation time of
the workspace description may be large, but has to be done only once. The
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major difficulty is that this description may be quite large: the calculation
of a trajectory in this structure may thus be time consuming.

In any case, motion planning for parallel robots is an interesting and
open challenge.

7.9. Exercises

Exercise 7.1: Show how a limitation on the rotation of the passive joints
attached to the moving platform of a 3-RPR planar robot could be taken
into account in calculating its constant orientation workspace.
Exercise 7.2: Describe an algorithm for calculating the constant orien-
tation workspace of a 3-RRR planar robot.
Exercise 7.3: Describe an algorithm for calculating the constant orien-
tation workspace of a 3-PRR planar robot.
Exercise 7.4: Describe an algorithm for calculating the orientation work-
space of a 3-RRR planar robot.
Exercise 7.5: Describe an algorithm for calculating the orientation work-
space of a 3-PRR planar robot.
Exercise 7.6: Describe an algorithm for calculating the dextrous workspace
of a 3-RRR planar robot.
Exercise 7.7: Describe an algorithm for calculating the dextrous workspace
of a 3-PRR planar robot.
Exercise 7.8: Describe an algorithm for calculating the maximal workspace
of a 3-RRR planar robot (for point B3).
Exercise 7.9: Describe an algorithm for calculating the horizontal
cross-sections of the constant orientation workspace of the Hexa robot (fig-
ure 2.38).
Exercise 7.10: Show how the calculation algorithm of the cross-sections of
the constant orientation workspace of a 6−UPS robot could be changed to
adapt it to a 6−PUS robot; include only the limitations on the stroke of the
linear actuators. Show that the boundary of the workspace is constituted
of circular arcs and of arcs of ellipses.
Exercise 7.11: Show how the algorithm of the previous exercise could
be modified to take into account the fact that the universal joints that are
attached to the linear actuators constrain the links to be in an angular cone
with an opening angle of θm, with |θm| < π

2 .
Exercise 7.12: Consider a 6−UPS robot having known minimal and
maximal leg lengths, and with C at a fixed location. Design an algorithm
for determining the maximum tilting angle θ that may reached by the
platform for any value of ψ in the range [0, 2π], allowing any value of φ in
the same range.
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Exercise 7.13: Assume that the point C of a 6−UPS robot describes
a line segment M1M2, with a constant orientation. Show that if at each of
the points M1,M2, the link length is lower than ρmax, then it will remain
lower than this limit for the whole line segment. Establish a similar result
when the limit is ρmin.
Exercise 7.14: Consider a line segment M1M2 described by the point
C of a 6−UPS robot with a variable orientation. Let U2 be the second
order approximation of CB, and ni the external normal to the face i of a
pyramid describing the constraints on the joints on the base. Show that if
AB.ni ≤ 0 for M1,M2 and if U2.ni is positive then AB.ni ≤ 0 for any of
the points on the trajectory.
Problem 7.1: How is it possible to model the mechanical limits of a
ball-and-socket joint made of an universal joint set on a revolute joint?
Problem 7.2: Is it possible to extend the checking method for the interfer-
ence between links to more complicated shapes of the links (parallelepipeds,
compound shapes) ?
Problem 7.3: Is it possible to determine the minimal radius and the
location of the center of a sphere that includes any reachable location of C
for a 6−UPS robot?
Problem 7.4: Is it possible to calculate geometrically the exact boundary
of the maximal workspace of a 6 d.o.f. robot?
Problem 7.5: Is it possible to determine the sphere of maximal radius, or
the box of maximal volume. included in a constant orientation workspace,
a total orientation workspace or in the maximal workspace?
Problem 7.6: Is it possible to determine if the maximal workspace of a
given robot is separated into distinct components?
Problem 7.7: Is it possible to determine constraints on the geometry of
a 6−UPS robot so that its maximal workspace is separated into distinct
components?
Problem 7.8: Is it possible to determine the coefficients of polynomials
representing the time-functions of the pose parameters so that the corre-
sponding trajectory lies within the workspace of the robot, and is singularity
and self-collision free ?
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Static analysis

This chapter deals with the relations existing between the joint forces of
the robot and the wrench that is applied on the end-effector. We will then
study the limits that are imposed on the wrench that may be applied on the
platform when the joint forces are bounded, and then reciprocally the ex-
trema of the joint forces when the wrench applied on the robot is bounded.
We will then study the stiffness of parallel manipulators.

8.1. Relations between wrench and joint forces

8.1.1. FUNDAMENTAL RELATIONS

The fundamental relation between the joint and the wrench, which is valid
for serial manipulators as well as for parallel manipulators, is the following:

τ = JTF (8.1)

where τ is the vector of the joint forces, F the wrench and J the kinematic
jacobian matrix. From this relation we get

F = J−Tτ (8.2)

A consequence of this relation is that the analysis of the mechanical equilib-
rium proves another mean for obtaining the full inverse kinematic jacobian
(see for example the analysis of the 3−UPU robot in (626)) and the choice
of the operating point will change the matrix involved in (8.1,8.2) (542).
Note that only the actuated joints forces/torques are involved in that cal-
culation. A full static analysis should involve all joints, either actuated or
passive, and hence all possible inverse kinematic jacobians.

8.1.2. DETERMINATION OF THE WRENCH

Being given the pose of the moving platform and the joint forces, we may
calculate the inverse kinematic jacobian matrix, therefore allowing us to
determine the wrench that acts on the moving platform.

259
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8.1.3. DETERMINATION OF THE JOINT FORCES

We now face the problem of determining J; we have seen in the ”Velocity”
chapter that except for simple architectures this usually can be expressed
only numerically. For determining the joint forces at a given pose we may
use either the jacobian matrix numerically determined from its inverse, or
use a numerical method for solving the linear system.

Another method is based on the use of an iterative scheme similar to
that used for the direct kinematics. This method needs to have an estimate
of the solution. The scheme is defined as

τ k = τ k−1 + JT
0 (F − J−Tτ k−1) . (8.3)

The iteration is stopped when the difference between the wrench F and
the forces that are calculated from the joint forces, J−Tτ k−1, is lower than
a fixed threshold. For the INRIA 6−UPS left hand, the algorithm seems
convergent throughout the workspace, and requires between one and three
iterations for an accurate result. The iterative method will usually be faster
than other methods, provided that the change in the poses is small.

We have assumed that the bodies constituting the robot are rigid. The
problem actually becomes more complex if we add elasticities to certain
parts of the robot. A very thorough analysis of the constraints in each of the
robot’s bodies may be done with the help of a finite element method, as sug-
gested by Ramachandran (493). But such an analysis is difficult to complete
on the workspace of the robot. To simplify we may use a lumped model in
order to account for joint and link compliances, see for example (155; 243;
639),(653)∗ , and obtain results that are good approximations. These results
show that the compliance in the joint may play a negative influence on the
stiffness of the robot. This approach allows to determine also which element
stiffness play a major role in the overall stiffness of the robot, although this
may change according to the pose of the robot in the workspace.

8.2. Maximal joint forces and maximal wrench

When designing a parallel robot, it is quite common to know some limits on
the wrench that will be applied on the moving platform. It will therefore be
useful to calculate the extremal values of the joint forces in order to choose
the linear actuators and passive joints. On the other hand, we may have
limited possibilities for the actuators and passive joints, which determine
the maximal value of the joint forces, and may want to calculate what will
be the corresponding maximal wrench.
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8.2.1. MAXIMAL JOINT FORCES IN A POSE

Let us assume that the wrench is bounded by ||F|| ≤ 1, our objective being
to determine the maximal joint forces for a given pose of the manipulator.
Using equation (8.2) and the Euclidean norm for F , we obtain

τ T J−1J−Tτ ≤ 1 (8.4)

This shows that the joint forces are included within an ellipsoid, called
the force ellipsoid. But this notion is somewhat fallacious if the d.o.f. of the
robot mixes translational and rotational motions as the limits on the wrench
force and torques will be usually different. The choice of the Euclidean
norm for F may also be discussed, and the infinity norm may be more
appropriate. In that case the allowed region for the task forces/torques is a
parallelepiped that is mapped by JT into a convex polyhedron in the joint
forces. The maximal joint forces are thus obtained from the infinity norm
of this matrix. The example of figure 8.1 presents the joint forces when a
wrench constituting of a cartesian force F lying in the range [-1,1], and no
torque is applied on the moving platform of the INRIA left hand.

Figure 8.1. Maximal joint forces in the τ1, τ2, τ3 space, when a cartesian force bounded
by |Fx,y,z| ≤ 1 is applied on the moving platform of INRIA left hand in its nominal
position. On the left, the joint force polyhedron, on the right, some contours

8.2.2. MAXIMAL JOINT FORCES IN A TRANSLATION WORKSPACE

In the chapter ”Velocity” we showed that the kinematic jacobian matrix is
usually difficult to obtain, particularly for 6 d.o.f. robots. As a consequence,
obtaining the maximal joint forces for a given wrench F on the moving
platform is difficult, except for simple architectures such as planar robots
(see exercise 8.4).
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We described in (410) an algorithm that calculates the extremum of
the joint forces for a 6−UPS robot, up to a pre-defined accuracy ε, in the
case in which the pose of the end-effector has to lie within a translation
workspace, i.e. the orientation of the platform is fixed. This algorithm can
be extended for other mechanical architectures, and we will summarize
it. First we restrict the translation workspace to be a box, as using the
principle described in section 13.3 we may then analyze any other type of
workspace.

The first component of the algorithm is able to determine the extremum
of the joint force when C moves on a line segment. It may be shown that
this can be done exactly by solving a seventh-order univariate polynomial
equation. The second component compute the extremum for any pose in a
horizontal rectangle up to the accuracy ε. This is done by sweeping the rect-
angle by successive parallel line segments. On each of them the extremum
is computed, and after each line segment the current calculated minimum
and maximum joint forces τmin, τmax are updated. The distance between
two successive segments is calculated in such way that the minimum (max-
imum) joint forces for the new segment will certainly not be lower (greater)
than τmin−ε (τmax+ε). Assuming that this distance is small, a conservative
value of the distance is obtained by solving a 22nd order polynomial equa-
tion. A similar procedure is used to sweep the box by horizontal rectangles
at different altitudes, the altitude between two successive rectangles being
calculated so that the change in the extremum is lower than ε.

Figure 8.2 shows the sensitivity of the computation time as a function
of the accuracy with which the extremum of the joint forces are computed
for a typical run.
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110

260
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Figure 8.2. Computation time of the extrema of the joint forces versus the desired
accuracy on these forces for a box workspace on a DELL D400, 1.2 GHz.
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8.2.3. MAXIMAL JOINT FORCES IN A GENERAL WORKSPACE

In section 5.6.1 we presented an algorithm that computes the minimal and
maximal values for the twist components, and for fixed bound on each
joint velocities. The calculation is performed over a workspace defined as
a box, and the extremum is computed up to a pre-defined accuracy. The
procedure is based on an interval analysis algorithm that computes the
enclosure of the solutions in Ẋ of the linear systems Θ̇a = J−1

fk Ẋ where J−1
fk

is an interval matrix. In our case we have a similar problem with the linear
interval systems F = J−T

fk τ and the algorithm may be used as well (see the
interval appendix for the details).

8.2.4. MAXIMAL WRENCH IN A POSE

We may want to determine the distribution of the forces that are produced
by the manipulator when the joint forces are bounded. The classical hy-
pothesis is to assume that ττT ≤ 1, so that we obtain, with the help of
equation (8.1), that FT JJTF ≤ 1. This relation changes the hypersphere of
the joint forces into a hyperellipsoid that is called the resistivity ellipsoid.

As usual, the ellipsoid concept is not entirely satisfying. It implies that
all joint forces are of the same type (force or torque) and a dependence
between joint forces that are in reality independently bounded. A better
hypothesis is to assume that each joint force has an absolute value bounded
by 1. In that case the hyper-cube in the joint force is mapped by J−T into
the wrench polyhedron in the wrench space. Figures 8.3,8.4 present projec-
tions of this polyhedron in the wrench space for the INRIA left hand in its
nominal position. The wrench polyhedron changes slightly for different

Figure 8.3. Maximal forces for the INRIA left hand in its nominal position when all
the absolute values of the components of τ are bounded by 1. On the left, the wrench
polyhedron, on the right, some contours.
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Figure 8.4. Maximal torques for the INRIA left hand in its nominal position when all
the absolute values of the components of τ are bounded by 1. On the left, the torque
polyhedron, on the right, some contours

poses. Figure 8.5 presents the intersection of the force polyhedra obtained
for various poses that differ from the nominal pose only by one change in
the pose parameters (the amount of change is 5 for the translation and 15
degrees for the rotation). At the nominal pose, the volume and surface of
the force polyhedron are 3.836, 22.81, while the intersection has a volume
and surface of 1.675, 10.92. Note also that the component that is the most
reduced is Fz, whose maximal value is halved.

Figure 8.5. Intersection of the force polyhedra for the INRIA left hand obtained at
various poses. It gives the minimal set of forces that may be applied by the end-effector
when all the absolute values of the components of τ are bounded by 1. On the left, the
intersection of force polyhedra, on the right, some contours.
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8.2.5. MAXIMAL WRENCH IN A WORKSPACE

Using the relation F = J−Tτ and a global optimization numerical pro-
cedure,we can calculate the extremal values of each component Fi of the
wrench that may be applied on the platform for bounded joint forces.

We consider, as an example, the INRIA left hand, in which the joint
forces are bounded by 300 N because there are force sensors in the links.
Figure 8.6 shows the maximal forces and torques that can be applied when
the platform moves in the x−y plane.

Figure 8.6. Maximal forces and torques that can be applied on the moving platform
of the INRIA left hand when the platform moves in the x − y plane. All joint forces are
bounded by 300 N.

8.3. Force performances indices

Force performance indices may be defined to characterize the overall static
behavior of the robot. As equation (8.2) involves the inverse kinematic ja-
cobian, the indices presented in the ”Velocity” chapter can be used (hence
they are often coined kinetostatic indices). Note that, as for the velocity
indices, the choice of the norm is important: for example the Euclidean
norm should not be used to indicate that the actuated joint forces are
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bounded(314). Classical indices are the force transmission index (173),
based for leg i on the angle between the velocity of the end-effector in-
duced by Θ̇i, and the force produced on the end-effector by the leg i and
the joint force index (86) (ratio of maximal joint forces to external load).
Chang (86) provides a review of these indices, and proposes a mean force
transmission index that is however quite difficult to calculate.

Zhang (654) suggests using the mean value and the standard deviation
of the trace of the compliance matrix, measures that have the drawback
of being very difficult to calculate. Krut (335) suggests using the radius
of the largest sphere centered at the origin and included in the task force
polyhedron (i.e. the largest force than can be balanced in any direction).
Although interesting, this measure does not cover the torque ability, and
does not describe the ability of the robot to resist a combined load.

8.4. Parallel robots as force sensors

The simple relation existing between the wrench and the joint forces has
enticed numerous researchers to use parallel structures as force sensors. For
example, a 6−UPS robot with segments that are submitted almost only to
traction-compression stresses, will require only a force cell in each link to
get the measurement of the joint forces. Then we may calculate the wrench
acting on the moving platform with the help of the inverse kinematics
jacobian matrix. This principle was suggested as early as 1979 by Rees
Jones (504), and is used in many commercial force sensors. Research in
this field is still very active (see the references Web page): for example
Ranganat (495) proposes using a near singular configuration to improve
the sensitivity of the force sensor.

The INRIA left hand was actually designed for forces/torques measure-
ments. Sensors with strain gages were placed in each link; these allowed us
to measure the vertical forces with an accuracy of about 0.15 N, and the
horizontal forces with an accuracy of about 0.03 N. This anisotropy in the
measurement accuracy derives from the geometry of the robot.

8.5. Stiffness and compliance

As mentioned in the introduction, many elements may influence the stiffness
of a robot, and a full analysis is difficult. The stiffness of a manipulator has
many consequences for its control since it conditions its bandwidth. For
serial manipulators, the bandwidth is low, only reaching a few Hz at best,
and is usually much better for parallel structures. In this section we will
assume that only the actuated joints are compliant, while all the other
elements are perfectly rigid. We now establish the stiffness matrix of a
parallel robot and focus on the 6−UPS robot (the stiffness matrix for other
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robots may be established using the same procedure, see for example (652)
for robots with 3, 4 and 5 d.o.f.).

8.5.1. STIFFNESS MATRIX OF A PARALLEL ROBOT

8.5.1.1 Elastic model
The stiffness of a parallel robot may be evaluated by using an elastic model
for the variations of the joint variables as functions of the forces that are
applied to the link. In this model, the change ∆Θ in the joint variable Θ
when an joint force τ is applied on the link is

∆τ = k∆Θ (8.5)

where k is the elastic stiffness of the link, supposed to be identical for all
legs. We also have

∆Θ = J−1∆X , ∆F = J−T∆τ , (8.6)

which leads to
∆F = kJ−TJ−1∆X . (8.7)

The stiffness matrix K and the compliance matrix C are therefore

K = kJ−TJ−1 , C =
1
k
JJT . (8.8)

Duffy (144) notes that this previous derivation supposes that there is no
initial load on the elastic element of the link. If we indeed suppose that the
length of the unloaded link is ρ0

i we will have

∆F =
i=6∑
i=1

k∆ρini + k(ρi − ρ0
i )∆ni ,

∆M =
i=6∑
i=1

k∆ρiCBi × ni + k(ρi − ρ0
i )∆(CBi × ni) ,

where ni represents the unit vector of link i, and F,M the forces and
torques that are applied to the platform. Consequently, the stiffness matrix
as defined in equation (8.8) is valid only if ρi = ρ0

i , and is coined the passive
stiffness. Duffy actually presents the exact formulation of the stiffness
matrix for a 3-RPR planar robot, while a more general analysis may be
found in (239; 542; 564). In this analysis the effect of preloading term is
included through a term ∂J−T/∂x τ referred as the active stiffness (187).
Note that the above theoretical stiffness matrix has been validated through
experimental results using a parallel wire measuring system (78).
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To conclude, let us mention the special case of wire robots: numerous
works have addressed this problem (see the references Web page). The
stiffness matrix in that case is dependent upon the tension in the wires,
and theoretical results are usually very close to experimental data.

Let us now illustrate the stiffness matrix on some examples, starting
with the stiffness matrix of a 6−UPS in its nominal position. Given the
symmetries, we obtain

K12 = K13 = K14 = K25 = K26 = K35 = K36 = K45 = K46 = 0 .

In general, the stiffness matrix will not be a diagonal matrix. For the
6−UPS INRIA left hand, the stiffness matrix is

K = k

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.05077 0.0 0.0 0.0 1.848 10−6

0.0 0.05077 −10−7 −1.848 0.0 0.0
0.0 −10−7 5.898 0.00002 0.0 0.0
0.0 −1.848 0.00002 183.71 0.0 0.0

1.848 0.0 0.0 0.0 183.7 0.0008
10−6 0.0 0.0 0.0 0.0008 4.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8.9)

For the 6−PUS active wrist we get

K12 = K13 = K14 = K25 = K26 = K34 = K35 = K36 = K45 = K46 = 0 ,

and the stiffness matrix is

K = k

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.1957 0.0 0.0 0.0 0.3451 −0.0004
0.0 0.1957 3e−6 −0.343 0.0 0.0
0.0 3e−6 6.0 0.0 0.0 0.0
0.0 −0.343 0.0 48.0 0.0 0.0

0.3451 0.0 0.0 0.0 47.886 0.0061
−0.0004 0.0 0.0 0.0 0.0061 6.175

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8.10)

8.5.1.2 Beam model
It is also possible to model the deformations of the links of a parallel robot
by simulating them by beams. The stiffness of a link will then be

ki =
ES

ρ
,

where E is the Young modulus, S is the surface of the cross-section of the
beam and ρ is its length. If Ka is the diagonal matrix such that Kaii =
EiSi/ρi, the stiffness matrix K is

K = J−TKaJ
−1 .
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8.5.2. PASSIVE COMPLIANCE AND FORCE-FEEDBACK CONTROL

The high rigidity of parallel robots is one of the characteristics for which
they are selected for some applications. However, there are cases where we
may need a certain structural compliance without losing the knowledge of
the position of the end-effector. This is a very common case in robotics,
especially for tasks when the end-effector may interact with the environ-
ment. In that case, having a compliant mechanism allows us to obtain a
slower variation of the contact forces. Moreover, this compliance will al-
low the contact forces to modify the position of the end-effector, which is
needed for certain tasks such as assembly. It is thus possible to show that
the contact forces due to alignment errors during an assembly may, if the
stiffness matrix has been carefully chosen, generate change in the pose of
the end-effector that will correct the errors. This principle lies at the basis
of assembly devices such as Whitney’s RCC (620) which is in fact a 6−UPS
robot without actuator, and with elastic links.

In the late 90’s parallel robots were developed for tasks which involve
contact with the surroundings (e.g. assembly). This was motivated by their
high positioning accuracy together with the possibility of using them as
force sensors. Numerous works have addressed this issue (see the references
Web page). It has been shown that closed loop control schemes using force
sensors generally improve if there is a passive compliance in the system.
Such passive compliance is always present in serial manipulators, whereas
it is reduced in parallel manipulators, for structural reasons. Furthermore,
for serial robots, the deformations due to the wrench action cannot usually
be measured by the internal sensors of the robot. Hence we will ignore the
exact position of the end effector during a contact.

As passive compliance is needed for certain applications of parallel
robots, we may choose to introduce it by adding elastic elements in the
links. For example, we intentionally placed axial elastics elements in each
link of the INRIA left hand. As opposed to the serial manipulator, the pres-
ence of this passive compliance does not affect the calculation of the pose
of the end-effector if we are careful enough to assemble the internal sensors
so that the deformations of the elastic elements are taken into account.
Figure 8.7 shows how the internal sensors of the left hand are assembled
in order to reach this aim. With this disposition we always measure the
real value of the joint coordinates, and, as a consequence, we are able to
compute the almost exact pose of the moving platform (otherwise the for-
ward kinematics will have to take into account the mechanical equilibrium,
and will be more complex (321)∗,(377),(605)). However we note that the
stiffness of the elastic elements needs to be large enough, otherwise an in-
stability might occur in the closed-loop control of the robot. Research in
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joint

elastic
damper

jack
potentiometer

Figure 8.7. Assembly of the internal sensors for the left hand, which allows us to measure
the real joint coordinates, although the link is compliant.

this area is still active (559).

8.5.3. STIFFNESS MAPS

It might be interesting to have, for a given manipulator, an atlas of the
stiffness matrix according to the pose of the end-effector. From this atlas,
we would be able to choose a working configuration where the stiffness
matrix will fit the needs of the task.

8.5.3.1 Iso-stiffness maps
An iso-stiffness curve is the locus of C on which a component of the stiffness
matrix has a constant value. An iso-stiffness map is a set of iso-stiffness
curves for different values of a particular component of the stiffness matrix.
We may illustrate this concept with the two particular cases of the 6−UPS
left hand and the 6−PUS active wrist. We present the results of a program
that was written by C. Gosselin (187), and which calculates iso-stiffness
curves in planar horizontal cross-sections of the workspace, the orientation
of the end-effector being fixed. Figure 8.8 presents a few iso-stiffness curves
obtained when the stiffness of the elastic elements is 1. We can also trace
both iso-stiffness surfaces and iso-stiffness volumes, as shown on figure 8.10.

Figure 8.9 shows a few iso-stiffness curves for the active wrist. These
results prove that it is possible, within certain limits, to adjust the stiffness
of the manipulator according to the task to be done, simply by changing
its pose.

8.5.3.2 Iso-stiffness of 6−UPS robot
In this section we assume that the orientation of the moving platform is
constant, and we specifically look at the iso-stiffness loci according to the
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Figure 8.8. Iso-stiffness for the INRIA left hand (zc=53.3, ψ = θ = φ = 0).
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position of C.
Let us first consider the kx term of the stiffness matrix:

kx = k
i=6∑
i=1

(xc − xai + xbi
)2

(xc − xai + xbi
)2 + (yc − yai + ybi

)2 + z2
c

= k
i=6∑
i=1

Ti(xc) (8.11)

For an SSM, symmetry shows that

T1(xc) = T2(−xc) , T3(xc) = T6(−xc) , T4(xc) = T5(−xc) ,

Therefore kx(xc) = kx(−xc) and, as a consequence, the iso-stiffness curves
for kx in an horizontal plane are symmetrical with respect to the y axis.
Let us now suppose that the robot is quite slender and that therefore

zc 
 xc − xai + xbi
, zc 
 yc − yai + ybi

.

Let
xi = xc − xai + xbi

, yi = yc − yai + ybi
.

The first order approximation of equation (8.11) is

kx ≈ k
i=6∑
i=1

x2
i

z2
c

− x4
i

z4
c

− x2
i y

2
i

z4
c

(8.12)

so that the first order approximation to the iso-stiffness surface kx = Kx is

−6x4
c − 6x2

cy
2
c + a2x

2
c + a3y

2
c + a4yc + a5 =

Kxz4
c

k
(8.13)

The coefficients ai depend only on the geometry of the mechanism. The
term ky is similar

ky = k
i=6∑
i=1

y2
i

x2
i + y2

i + z2
c

= k
i=6∑
i=1

Si(xc) . (8.14)

Given the symmetries of a SSM, we have

S1(xc) = S2(−xc) , S3(xc) = S6(−xc) , S4(xc) = S5(−xc) ,

The iso-stiffness curve in a horizontal plane will therefore be symmetrical
with respect to the y axis. Developing equation (8.14) to the first order, we
obtain

ky ≈ k
i=6∑
i=1

y2
i

z2
c

− y4
i

z4
c

− x2
i y

2
i

z4
c

(8.15)
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Developing and taking the symmetries into account, we find the iso-stiffness
surface ky = Ky as

−6y4
c − 6x2

cy
2
c + b2x

2
c + b3y

2
c + b4yc + b5 =

Kyz
4
c

k
(8.16)

Lastly, for the term kz, we have

kz = k
i=6∑
i=1

z2
c

x2
i + y2

i + z2
c

= k
i=6∑
i=1

Si(xc) , (8.17)

which gives, when it is developed to the first order,

kz ≈ 6k − k
i=6∑
i=1

x2
i + y2

i

z2
c

. (8.18)

The iso-stiffness surface is therefore a cone with circular section and vertical
axis (figure 8.10).

Figure 8.10. On the left, the iso-stiffness surface kz = 5.8 of INRIA left hand for a
constant orientation. On the right, the stiffness kz according to the platform position in
the x − y plane

8.5.4. EXTREMA OF THE STIFFNESS IN A WORKSPACE

The purpose of this section is to calculate the extrema of the stiffness for a
slender 6−UPS robot when C lies in a given workspace. We specifically look
for the extremal values of the diagonal elements of the matrix K, which will
be called the main stiffnesses. We showed in (407) that if the orientation of
the end-effector was constant it is possible to calculate exactly the stiffness
extrema over a box workspace (and consequently for any other type of
workspace defined in terms of the end-effector parameters, by using the
principle described in section 13.3). Note that the extrema of the stiffnesses
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for a box will always be obtained on the horizontal faces of the box. For a
general box workspace we will have to rely usually on a numerical global
optimization procedure.

8.5.5. STIFFNESS AND DESIGN

It may be interesting to design a robot so that it stiffness matrix is close to
a desired one, at least for some poses. This may be done either by choosing
an appropriate mechanical structure, by an appropriate dimensioning or
by control. Artigue (17) suggested a specific robot architecture where the
stiffness matrix is diagonal (which is particularly interesting for a force sen-
sor). Hashimoto (220) suggested a method for designing Lee’s 3 d.o.f. robot
(figure 2.17) so that it possesses a fixed stiffness matrix. Goswami (202)
proposes a very general approach for synthesizing passive parallel mecha-
nism so that they have a fixed accommodation matrix (this matrix relates
the wrench acting on the end-effector to its twist). Kim (319) calculated the
stiffness matrix of a 3-RRR planar robot and determined the geometry of
the robot so that this matrix is diagonal. Dimensioning may change drasti-
cally the values in the stiffness matrix but not so much its general structure.
A restricted set of stiffness matrices may be obtained by dimensioning (97;
240),(509)∗ and designing for stiffness requirements is a difficult problem.
For example Simaan shows that the stiffness matrix may be modified with
redundant robots but that there are specific configurations for which this
control will be lost (541).

Bhattacharya (38) introduces various measures to qualify the stiffness
of a robot over a given workspace. Assuming that the Euclidean norm
of the wrench is bounded by 1 all wrenches lies on a unit sphere that is
mapped by the transformation KTK to an ellipsoid, the flexibility ellipsoid,
in the motion space of the end-effector. Bhattacharya uses classical indices
derived from KTK such as the determinant and the average of the minimal
eigenvalue, to qualify the stiffness of the robot over a given workspace. The
drawbacks of these indices is that they are quite difficult to calculate and
that forces and torques are not distinguished.

Maeda (382) shows that for a robot using pneumatic actuators it is
possible to modify the compliance of the manipulator by an appropriate
control of the jacks. The stability of such control has been studied for
planar robot by Svinin (563).

8.6. Static balancing

An interesting problem is that of statically balancing parallel robots. Con-
sider a planar parallel robot in a vertical plane. The masses of the links
induce wrench on the end-effector, and the actuators have to produce a
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wrench in order to keep a given pose. The aim of static balancing is to
reduce (or ideally to cancel) this wrench by adding mechanical elements to
the robot. Static balancing can be done by using either counterweights or
springs, so that the robot is in mechanical equilibrium in all poses, while
the actuators do not provide any force or torque. The drawback of counter-
weights is that they have a negative influence on the dynamic performances;
on the other hand, using springs introduces more unknowns than counter-
weights.

The problem of static balancing is to determine first if a given archi-
tecture may be balanced over its workspace, and then to calculate the
necessary counterweight masses and their positions on the links (or the at-
tachment points and stiffness of the springs). This problem was addressed
early by Dunlop (145) who suggested the use of counterweights to balance
a 2 d.o.f. parallel robot used for antenna aiming, and by Jean (282) for
planar robots. In that case the balancing conditions are sufficiently simple
to be managed by hand or through a numerical algorithm.

The problem of statically balancing spatial parallel robots is much more
complex. The most active team in this field is led by Gosselin and co-
workers; they have produced many papers on this subject (153)∗,(201)∗. An
important result was proved by this team (349): it is not possible to balance
a 6−UPS robot in all poses by using only counterweights. Gosselin and his
co-workers then suggest other mechanisms using parallelograms which can
be balanced using springs (153; 428; 610).

Dynamic balancing may also be considered, the problem being to min-
imize the changes in the inertia over the workspace (628). This issue will
be addressed in the ”Dynamics” chapter.

8.7. Exercises

Exercise 8.1: Consider a robot with bounded joint forces submitted to
a pure horizontal force. Determine the maximal forces that may be applied
to it in a given pose by drawing the allowed forces region in the Fx−Fy

plane.
Exercise 8.2: Consider a slender 6−UPS robot with a platform moving
within a horizontal plane, with a constant orientation and with individually
bounded joint forces. Determine the locus of the poses in the x−y plane
where the maximum force Fz has a constant value.
Exercise 8.3: Consider a slender 6−UPS robot, with a planar platform
moving within a horizontal plane, with a constant orientation (ψ = 0, θ =
0, φ = 0), and with individually bounded joint forces. The platform is
submitted only to a torque My. Determine the locus of the pose in the
x−y plane where the torque My is maximum.
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Exercise 8.4: We consider a 3-RPR planar robot with points Ai, Bi given
by

A1 = (0, 0) , A2 = (5, 0) , A3 = (2, 4) , B1 = (0, 0) , B2 = (2, 0) , B3 = (1, 2) .

This robot is submitted to a constant wrench Fx = 1, Fy = 0,Mz = 0, while
point A1 moves on the line segment going from (3,3) to (5,3), the mobile
platform having a constant orientation that is defined by θ = 0. Determine
the extrema of the joint forces that act on the links.
Exercise 8.5: Resolve the previous problem, supposing that the robot
moves within a horizontal rectangle with corners at (3,3),(5,5).
Exercise 8.6: Find the center of the iso-stiffness curves kz = Kz in the
horizontal plane of a slender 6−UPS robot. Show that for a SSM with
ψ = 0, θ = 0, φ = 0 the iso-stiffness surface axis intersects the point with
coordinates (0,0,0).
Problem 8.1: Determine the extrema of the joint forces that act upon
a 6−UPS robot which is submitted to a given wrench, while the platform
moves within a given 6D workspace.
Problem 8.2: Determine the extrema of the wrench that act on a 6−UPS
robot with bounded joint forces, while the platform moves within a given
6D workspace.
Problem 8.3: Establish the stiffness matrix of a 6−UPS robot with
segments with unloaded lengths ρ0

i and current lengths ρ.
Problem 8.4: Determine the extrema of the stiffnesses for a non slender
6−UPS robot and for a given 6D workspace.
Problem 8.5: Determine if it is possible to balance a horizontal 6−UPS
robot using springs.
Problem 8.6: Determine for a wire-driven robot which has no force
closure (e.g. a planar robot with only 3 wires) the equilibrium pose for a
given load.
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Dynamics

This chapter will deal with the direct and inverse dynamics i.e. the deter-
mination of the relations between the generalized accelerations, velocities,
coordinates of the end-effector and the joint forces. We will also consider
their use for simulation and control.

9.1. Introduction

Dynamics plays an important role in the control of parallel robots for some
applications:

1. fast and/or heavily loaded robots: they operate over a relatively large
workspace at a speed such that the dynamic effects have a substantial
role in the end-effector motion. Flight simulators or pick-and-place are
examples of such applications

2. high bandwidth robots: such robots operate over a very small workspace
but at a high frequency. A typical application of such a robot is vibra-
tion simulation (394)

3. structurally sensitive robots: the structure of these robots is such that
dynamic effects, even at low speed, may significantly modify their be-
havior. Typical of this category are wire robots (306; 535) and flexible
robots (296)∗,(353). Pritschow (489) notes also that for high-speed ma-
chining the dynamic errors have a much stronger impact than the static
errors.

A first issue has to be addressed: do we need to establish the dynamic
models of the robot for control purposes ? There is indeed one school of
thought that recommends that dynamic models should not be used because
modeling errors are too numerous (some parameters which appear in the
dynamics relations indeed are difficult to estimate, even though on-line esti-
mation methods have been proposed (39)). Thus instead of considering the
whole system, some suggest that each actuator be controlled independently
with a control law more robust than a simple PID (93). It is also argued
that establishing a usable control law based on the dynamics relations is
difficult not only because of the complexity of the dynamics relations, but
also because of the difficulty of managing the direct kinematics which is
always encountered in the dynamics relations.

277
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Still, these arguments that may indeed be discussed for category 1 robots
are less valid for the other categories. Hence we will present in this chapter
a state of the art for the calculation of the dynamic models. This com-
plex subject has been extensively studied (320; 441; 456) and there is an
extensive literature specifically devoted to parallel robots (350; 500; 561;
604). There are two different types of dynamic models:
− inverse dynamics: being given the trajectory, velocities and accelera-

tion X,W,Ẇ of the end-effector, determine the actuated joint forces
τ . Note that the general formulation the inverse model will be

M(X)Ẇ + C(W,X, (Θ)) + G = τ

where M is the positive-definite inertia matrix, G the gravitational
term and C the centrifugal and Coriolis term. This formulation is the
same as for serial robots.

− direct dynamics: being given the actuated joints forces/torques, deter-
mine the trajectory, velocities and acceleration of the end-effector

A classical method for calculating the dynamic models of closed-chains
is to consider first an equivalent tree-structure, and then to consider the
system constraints by the use of Lagrange multipliers or d’Alembert’s prin-
ciple (3; 372), a principle that has proved to be valid in (371). We will
illustrate this method in section 9.2. Other approaches include the use of
virtual work (100; 174; 588; 609), Lagrange formalism (172; 179; 376; 419;
447), Hamilton’s principle (420)∗, Newton-Euler equations (105; 129; 140;
183; 208; 218; 500; 547).

In some cases formalisms may be mixed: for example Zanganeh (650)
uses both the Lagrangian and Newton-Euler approaches. An original ap-
proach is proposed by Khalil (309): closed-form inverse and direct dynamics
models are presented in terms of the dynamic models of the legs which can
be calculated by any formalism. Furthermore the base inertial parameters,
i.e. the minimum number of parameters to compute the models, is presented
in closed-form. Computation cost is indeed a key issue for dynamic model-
ing, as although all formalisms are in theory equivalent (638) their calcu-
lation cost may be different. Zhang (657) and Hesselbach (233) have made
a thorough analysis of the computation cost of the different formalisms.
Geike has investigated how a combined symbolic/numeric approach may
be used to automate the calculation of the inverse dynamic model (177),
and Bhattacharya (40) shows that the inverse of the inertia matrix, that is
needed for the direct dynamics, may be computed recursively.

Frequently, simplifying assumptions are made. For example Clavel (100),
Pierrot (476)∗ and Codourey (105) neglected the rotary inertia of the links,
and assumed their masses to be concentrated at the ends. Codourey success-
fully implemented the models for a Delta robot. Do (140) assumes that the
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center of mass of each link is located in the middle of the link and that the
moving platform is a disk; this simplifies its inertia matrix. Reboulet (500)
assumes reasonably that for a 6−UPS robot the location of the center of
mass of a link does not vary along the link. He obtains a direct dynamics
that is simpler than Do’s. Ji (287) looked mainly at the influence of the
link inertias in the calculation of the dynamics equations by showing that
for a Gough platform, the link inertias could be attributed to the platform,
which means that the link inertia may be neglected. Nguyen (447), and
later Li (364) shows that in practice it is possible to find, for manipulators
of the 6−UPS type, a bound on the velocity of the linear actuator that
allows one to neglect the Coriolis and inertia forces. He also noticed that
the layout of the joint centers on the platforms is extremely important:
the closer the base is to a triangle, and the platform to a regular hexagon,
the less powerful the actuators will have to be. Wendlandt (616) investi-
gates the influence of a spring component on the dynamics equations of a
micro-robot. We must also mention the approach of dynamic balancing by
Xi (628): the tool holder is used as a counterweight to reduce the changes in
the inertia matrix. The location and mass of this tool holder are determined
for a given task so that the change in the inertia matrix is minimized.

Using dynamic models for control purposes has been studied by Ta-
doroko (565) and Honneger (237), who suggested using them in an adaptive
control scheme, in which the tracking errors are used on-line to correct the
parameters used in the dynamics equations. Burdet (65) has tested control
laws using dynamic compensation on the 6 d.o.f. Hexaglide, and has shown
improvement compared to a linear controller although the velocity of the
robot was relatively low. Vibration control with dynamic models has also
been addressed, see for example (297)∗,(332) and the ”Vibration” section
in the references Web page. The dynamic effect of an impact on a platform
used for spacecraft docking has also been studied (354). Di Gregorio (136)
proposes using the eigenvalues of the generalized inertia matrix referred to
the end-effector as a dynamic performance index.

We will now present some dynamic model calculation examples.

9.2. MSSM inverse dynamics

We will use the classical method of considering first an equivalent tree-
structure, and introducing the system constraints by the use of the La-
grange multipliers (320; 441). In the classical approach for a mechanism
containing N rigid bodies and L links, the tree mechanism is obtained from
the original mechanism by opening the loops at certain passive links so that
the obtained tree mechanism has as many independent branches B = L−N
as the original mechanism. Thus, for an MSSM which has 31 rigid bodies
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and 36 links, we obtain a tree mechanism with 5 independent branches by
opening the loops of the MSSM at the level of the ball-and-socket joints on
the platform. The number of links of the tree mechanism is equal to the
number of rigid bodies of the MSSM i.e. 31 (figure 9.1). Amongst these

platform

base

linear actuator

universal
joint

ball and
socket joint

Figure 9.1. The classical tree mechanism used for obtaining the dynamics equations
(from Ait-Ahmed (3))

links, we have 6 actuated links and therefore 25 elementary passive links
for which we must write a constraint equation. These equations are intro-
duced into the dynamics equations of the tree mechanism with the help
of Lagrange multipliers, to obtain the dynamic equations of the original
mechanism. We can thus see that the number of multipliers is large, which
makes resolution a rather delicate task.

Ait-Ahmed(3) has suggested opening the loops in a larger number of
passive links than for the classical method. Thus, for the MSSM, the tree
mechanism may be obtained by taking off the platform and the revolute
joints, i.e. by taking off 18 passive joints (figure 9.2). The resulting mech-
anism contains only 18 links, 12 of which require constraint equations, i.e.
less than half of those required by the classical method. As for the bod-
ies that are removed, their inertias will be added to the external wrench.
Adding the constraints to the tree mechanism may be done by introducing
12 Lagrange multipliers, that may be obtained from the inverse of a 12 ×
12 matrix ωb, with:

ωb =
∂S

∂qb
,

where qb represents the parameters of the 12 links and S the 12 constraint
equations vector. For the MSSM, Ait-Ahmed manages to establish a sym-
bolic form of the inverse of ωb, because of the particular structure of the
matrix. Thus, we obtain the inverse dynamics for an MSSM, without using
simplifying hypotheses; it may be calculated in a relatively small computa-
tion time, although still too large for real-time use.
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base

linear actuator

universal

joint

Figure 9.2. The tree model that is used in Ait-Ahmed method for obtaining the dynamics
equations

The limits of this method are due to the necessity of calculating the
inverse of the 12 × 12 matrix. Thus, Ait-Ahmed notices that, for the general
6−UPS robot, the matrix ωb no longer has the particular structure that
was found for the MSSM, and he was unable to calculate its inverse. It is
therefore necessary to do a costly numerical inversion.

9.3. 6−UPS manipulator dynamics

The complexity of the dynamics equations may be illustrated by the 6−UPS
robot, starting with the direct dynamics.

9.3.1. HYPOTHESIS AND NOTATION

The following hypotheses are made for this calculation:

− the inertia matrix Ii of the i-th link, expressed in the frame with origin
Ai, and z axis along the link axis, is

Ii =

⎛
⎝ Ji 0 0

0 Ji 0
0 0 0

⎞
⎠

− the masses of the links is neglected.

The center of mass of the end-effector is denoted by G, its mass by m and
its inertia matrix by I. The acceleration of point G is written as γG. For a
vector v with components (x, y, z) we denote by v the matrix such that:

v × a = va with v =

⎛
⎝ 0 −z y

z 0 −x
−y x 0

⎞
⎠

where a is an arbitrary vector
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9.3.2. ALGORITHM PRINCIPLE

The force fi that acts at point Bi may be decomposed into two components:
− the given joint force τi directed along the unit vector ni of the link
− one perpendicular to ni, due to inertia, which will be denoted fNi

(figure 9.3).

F M

n1
n2

n3

fN3

fN1
fN2

τ1
τ2

τ3
C

f1

f3

f2

moving platform

Figure 9.3. External, joint and inertia forces applied on the platform of a parallel robot.

We first assume that we know the vector fi, or equivalently the vector fNi
.

We have:
fi = τini + fNi

(9.1)

Let FN be the resultant force of the forces fNi
and MN their resultant

torque about C. If F and M are the force and torque applied on the end-
effector at point C, the equilibrium equations may be written as

F =
i=6∑
i=1

τini + FN , (9.2)

M =
i=6∑
i=1

τi(CBi × ni) + MN . (9.3)

Let σN and σ be the dimension 6 vectors:

σN =
[

FN

MN

]
, σ =

[
F
M

]
. (9.4)

Equation (9.3) may be written as

σ = J−Tτ + σN . (9.5)

The torque MG applied on the end-effector with respect to point G is

MG = M + GC × F . (9.6)
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The Newton-Euler equations are{
F + mg = mγG ,

MG = IΩ̇ + Ω × IΩ .
(9.7)

The acceleration of C, denoted by γC, may be obtained from the accelera-
tion γG by

γC = γG + Ω̇× GC + Ω × (Ω × GC) , (9.8)

therefore
F + mg = m(γC + GCΩ̇ + (Ω × GC) × Ω) . (9.9)

From this equation and from equations (9.6,9.7,9.8) we get

M = (I−mGC2)Ω̇−mGCγC+Ω×IΩ−mGC(g+Ω×(Ω×GC)) . (9.10)

We have
ω = ((Ω × GC) ×Ω) .

We may write equations (9.9), (9.10) in matrix form as

σ = T1Ẇ + T2 . (9.11)

where Ẇ represents the derivatives of the twist, T1 is a 6 × 6 matrix and
T2 is a vector of dimension 6, defined by

T1 =

(
mI3 mGC
−mGC I − mGC2

)
, T2 =

[
mω − mg
Ω × IΩ + mGC(ω − g)

]
,

(9.12)
where I3 represents the 3 × 3 identity matrix. From (9.5),(9.11) we get

T1Ẇ + T2 = J−Tτ + σN . (9.13)

This equation concludes the first stage of our calculation. We have estab-
lished the derivatives of the twist at C as functions of the joint forces and of
the wrench produced by the forces perpendicular to the links. This wrench
may also be expressed as a function of the derivatives of the twist: we will
now determine this relation.
Let γi be the acceleration of point Bi. We have

γi = γC + Ω̇ × CBi + Ω× (Ω × CBi) , (9.14)

which we write in matrix form as

γi = U1iẆ + U2i
, (9.15)



284 CHAPTER 9

where U1i is a 3 × 6 matrix and U2i
a vector of dimension 3, defined by

U1i =
(

I3 −CBi

)
U2i

= Ω × (Ω × CBi) . (9.16)

The projection γNi
of γi on a plane perpendicular to ni is given by

γNi
= (ni × γi) × ni , (9.17)

which we write in matrix form, using equation (9.15), as

γNi
= −ni

2U1iẆ − ni
2U2i

. (9.18)

Besides, we have

fNi
= −Ji

ρ2
i

γNi
. (9.19)

The components of the vector σN are

FN =
i=6∑
i=1

fNi
, MN =

i=6∑
i=1

CBi × fNi
. (9.20)

Using equations (9.18),(9.19) we get

FN = (
i=6∑
i=1

Ji

ρ2
i

ni
2U1i)Ẇ +

i=6∑
i=1

Ji

ρ2
i

(ni
2U2i

) , (9.21)

and

MN = (
i=6∑
i=1

Ji

ρ2
i

CBini
2U1i)Ẇ +

i=6∑
i=1

Ji

ρ2
i

CBini
2U2i

. (9.22)

We combine these last two equations to determine σN , which we write in
matrix form:

σN = V1Ẇ + V2 , (9.23)

where V1 is a 6 × 6 matrix and V2 a vector of dimension 6:

V1 =

⎛
⎜⎜⎝

∑i=6
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Ji
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i
ni

2U1i

∑i=6
i=1

Ji

ρ2
i
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⎞
⎟⎟⎠ , V2 =

⎡
⎢⎢⎣
∑i=6

i=1
Ji

ρ2
i
(ni

2U2i
)

∑i=6
i=1

Ji

ρ2
i
CBini

2U2i

⎤
⎥⎥⎦ . (9.24)

From equations (9.13),(9.23) we get

(T1 − V1)Ẇ + (T2 −V2) = J−Tτ ; (9.25)
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we have

Ẇ = (T1 − V1)−1J−Tτ − (T1 − V1)−1(T2 − V2) . (9.26)

This equation represents the direct dynamics of a 6−UPS robot. The in-
verse dynamics, which is more interesting as far as control is concerned,
may simply be established by

τ = JT(T1 − V1)Ẇ + JT(T2 − V2) (9.27)

9.4. 6−PUS robot dynamics

We use the same approach as in the previous section. The force fi that is
applied at point Bi may be decomposed:
− fsi which is directed along the vector ni

− fNi
perpendicular to ni, which is due to inertia (figure 9.4)

F

M

n1

n2

n3

fN3

fN1
fN2

τ1 τ2 τ3

C
f1

f3

f2

u

fs3

fs1
fs2

moving platform

Figure 9.4. External, joint and inertia forces that are applied to the active wrist

The force fsi is related to the joint force τi by

fsi = τi(ni.u)ni . (9.28)

Using the notation of the previous section, we may write

F =
i=6∑
i=1

τi(ni.u)ni + FN , (9.29)

M =
i=6∑
i=1

τi(ni.u)(CBi × ni) + MN . (9.30)

Let J−1
α be the matrix defined by the rows

[(ni.u)ni , (ni.u)(CBi × ni)] . (9.31)
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We note that this matrix is not the transpose of the inverse of the kinematic
jacobian matrix of the active wrist. Equations (9.30) may be written in
matrix form as

σ = J−1
α τ + σN . (9.32)

The calculation of σN is identical to that which we did in the previous
section. The dynamic model is obtained simply by replacing the matrix JT

by the matrix Jα in equations (9.26), (9.27). We therefore have

Ẇ = (T1 − V1)−1J−1
α τ − (T1 − V1)−1(T2 − V2) , (9.33)

τ = Jα(T1 − V1)Ẇ + Jα(T2 − V2) . (9.34)

9.5. Computation time

Using the inverse dynamics within a control loop requires much calculation.
After having measured the joint coordinates, we use the direct kinematics
to obtain the pose of the end-effector. We then evaluate vector GC (and
therefore GC) defined by GC = RGCr. At this stage, we calculate matrix
T1, and then estimate the vector Ω from the orientation of the end-effector.
This allows us to calculate ω, and therefore to obtain the vector T2.

Using the orientation of the end-effector, we calculate CBi, which gives
us the matrices U1i and the vectors U2i

. We may also determine the unit
vectors ni of the links, and therefore matrix V1 and vector V2. Lastly, we
calculate matrix J−1 (or J−1

α ), which we invert numerically.
Using the pose of the end-effector the joint coordinates and the current

velocities as input, we need a computation time of 0.0185 ms for the calcu-
lation of the joint forces on a DELL D400, 1.2 Ghz. Using the joint forces
as input, we may calculate the accelerations of the end-effector in approx-
imately the same time. To this time should be added the communication
time; the sampling time of the inner control loop of the actuator should also
be taken into account. In practice, the use of dynamics equations (either
inverse or direct) for control purposes seems to have been limited to the
Delta robot (105) and to the Hexaglide (65).

9.6. Examples

9.6.1. INVERSE DYNAMICS

We present an example of the calculation of the joint forces for the 6−UPS
INRIA left hand, using the accelerations imposed on the moving platform
as input. In this simulation we use the following parameters

m = 1 kg , Ji = 2500 kg cm2 , I11 = I22 = I33 = 400 kg cm2 , Iij,i�=j = 0 .
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The accelerations inputs are

γx = 1 cm/s2 , t ∈ [0, 2] ; γx = −1 cm/s2 , t ∈]2, 4] ; γy = 5 cm/s2 , t ∈ [0, 4] ;

the other components of the acceleration vector are zero. The initial carte-
sian and angular velocities of the end-effector are zero, and the initial po-
sition is [0,0,53.3], while the initial orientation is [0,0,0].

The x, y coordinates of the moving platform are presented in figure 9.5,
and the joint forces for the links in figure 9.6.
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Figure 9.5. The x, y coordinates of the end-effector obtained for given acceleration
inputs, obtained by using the inverse dynamics.
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Figure 9.6. Joint forces on the trajectory as calculated with the inverse dynamics.

9.6.2. DIRECT DYNAMICS

We consider the example presented in the previous section to illustrate an
application of the direct dynamics. We assume that the end-effector has
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to realize a vertical motion, starting from its nominal position. The inverse
dynamics shows that all the linear actuators must provide an identical force,
that we will suppose constant and equal to 1.65 N. However, an error in
the model of one of the actuators, leads to actual applied forces

τ1 = 1.6665 N , τi = 1.65 N , ∀ i ∈ [2, 6] .

The initial cartesian and angular velocities are assumed to be zero, the
initial position of the end-effector is (0,0,53.3), while all of the Euler angles
are zero.

Using the direct dynamics, we compute the x, y, z coordinates of the
moving platform; these are shown in figure 9.7. We note that the small
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Figure 9.7. Trajectory described by the platform as computed by the direct dynamics

error in the control-loop of the joint forces of link 1 leads to a path that
clearly diverges from the required path. The final position that is reached
is (-0.186, -0.0521, 57.864), the Euler angles being ψ=0.447 degrees, θ=
4.7031 degrees, φ= 0 degree. With a perfect control, the position would be
(0,0,54.57) and ψ = θ = φ = 0. This example clearly shows that a naive
use of the direct dynamics may be quite dangerous.

9.7. Exercises

Exercise 9.1: Show how Lagrange’s principle may be used to obtain the
inverse dynamics of a Delta robot. Note: rather than using only the joint
coordinates, we may include the pose parameters of the platform.
Problem 9.1: How can we establish a bound on the computation time of
the dynamics equations so that a control law based on these equations will
be more efficient than the classical control law that neglects the dynamics?



CHAPTER 10

Calibration

This chapter deals with the identification problem of the parameters that
are used for parallel robot modeling. Up to now the analysis presented
in the previous sections has assumed a perfect knowledge of the values of
structurally intrinsic parameters of the robot, an assumption that does not
hold in practice. In this chapter we will focus on methods that allow one
to improve the knowledge of the geometry of the actual robots1.

10.1. Introduction

Practical use of the various analyses presented in the previous sections re-
quires a perfect knowledge of structurally intrinsic parameters of the robot,
such as its geometry, dynamic characteristics . . .. Thus, position control of a
Gough platform requires the knowledge of the location of the centers of the
passive joints, as well as the offsets of the links, i.e. the lengths of the legs
for a 0 value of the sensor measuring the length changes. Even if estimates
of these parameters are available, deviations are unavoidable (e.g. due to
manufacturing tolerances) and hence identification procedures may be nec-
essary. In this chapter we will focus on the identification of the geometry
of the robot; this is usually called the kinematic calibration of the robot.
Note that, most of the time, calibration is understood as identifying small
deviations of the robot geometry around nominal values, but it may also
be used when almost no information on the geometry is available. For ex-
ample Tadokoro (566) mentions the use of calibration for the identification
of the geometry of a wire robot used as a crane during search and rescue
operations, and Ji (289) mentions its use for modular robots, i.e. robots
whose geometry may be radically changed to adapt their performances to
the task.

It must also be noted that there is a fundamental antinomy between
optimal design of parallel robot (an issue that will be addressed in the
”Design” chapter) and calibration. Indeed one of the purposes of optimal
design may be to determine a dimensioning of the robot so that its kine-
matic behavior is the least sensitive to changes of the robot geometry, while

1This chapter has benefited from numerous discussions with D. Daney, who is here
specially acknowledged

289
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the principle of calibration on the other hand, is on the opposite to use this
sensitivity to improve the knowledge of the geometry. Calibration results
will hence be sensitive to the quality of design, and therefore comparison
of calibration methods based on simulation results will be difficult if the
calibrated robots do not have the same sensitivity.

10.2. Types and principle of calibration methods

There are three main types of calibration methods:

1. external calibration: methods based on total or partial measurements
of the platform poses or of other geometrical elements of the robot
through an external device

2. constrained calibration: methods that rely on a devoted mechanical
system that constrains the robot motion during the calibration process

3. auto-calibration or self-calibration: methods that rely on the measure-
ments of the internal sensors of the robots. In that case it is required
that a n d.o.f. robot has m > n internal sensors

10.2.1. CALIBRATION PRINCIPLE

All calibration methods impose virtual or real constraints on the poses of
the end-effector. The principle of the calibration process will be to get these
constraints at various poses of the end-effector (called the calibration poses)
until the number of constraints is large enough to determine which geome-
try of the robot satisfies them best. This principle is the one that has been
used successfully for serial robot calibration, but it was recognized early by
Everett (157) that the calibration problem of closed chains was very dif-
ferent from that for serial chains, and requires a specific treatment in term
of measurements (for example measuring devices with a small workspace
classically used for serial robot are not appropriate for parallel robots) and
in terms of processing.

In practice, all the constraints that must be fulfilled at each calibration
pose will be written as a set of c constraint equations that are functions of
m geometrical parameters P of the robot, of the measurements obtained at
the pose, and of the n pose parameters of the calibration poses. Hence for
a set of N calibration poses we get a set of N × c constraint equations with
m + N × n unknowns. A calibration method is designed in such way that
there always is a limit Nl on N such that Nl×c ≥ m+Nl×n i.e. the number
of constraint equations is greater than or equal to the number of unknowns.
The constraint equations are usually non-linear, except in some special
cases. For example, for micro-robots, linearized constraint equations may
be used, as mentioned by Arai (15) and Ojala (454). In an ideal world and
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for a perfect calibration method, P will be the only solution of the constraint
equations. In practice, however noise in the measurements and imperfection
in the robot modeling will be such that the constraint equations will never
be exactly satisfied. Hence a numerical procedure will be used to find a P
that most nearly satisfies the constraint equations. A typical example of
such procedure will be to find the P that minimizes the sum of the squares
of the constraint equations.

10.2.2. GENERAL COMPARISON OF CALIBRATION METHODS

External and constrained calibrations share the properties that the robot
must be calibrated off-line, and that a specific hardware processing has to be
done at each calibration pose (or for each class of calibration poses). Hence
these methods will usually be lengthy in time. Furthermore, calibration
poses will often be restricted to lie within a small region of the workspace.

On the other hand, for auto-calibration each pose of the robot may
be used as a calibration pose, and thus calibration may be performed on-
line over the whole workspace of the robot. Furthermore, the additional
sensors may be used for other purposes such as, for example, enabling a
faster solution of the direct kinematics problem (see section 4.7). But not
all parameters may be observable, as we see in next section.

In terms of cost, we will see that external calibration may requires ex-
pensive measuring devices to get decent calibration results (although we
will see that low-cost measurement devices may be used within an appro-
priate framework). Constrained calibration is probably the least expensive,
while auto-calibration is relatively low-cost, provided that the robot has
been designed with this possibility in mind. External and auto calibrations
are compared in detail in (123).

10.2.3. ISSUES IN CALIBRATION METHODS

Different issues must be addressed when examining a calibration method:
− observability: the possibility of identifying all geometry parameters of

the robot. Indeed for some calibration methods some parameters have
no effect on the model while some others have an influence only as a
group. An observability measure is derived from the N c × m jaco-
bian matrix of the constraint equations, called the observation matrix,
whose rank will determine the number of observable parameters (308).
The observation matrix may sometime be calculated analytically, oth-
erwise it has to be estimated numerically. The set of observable pa-
rameters may be obtained by a QR decomposition of the observation
matrix. The condition number of the observation matrix is usually con-
sidered a good index to quantify the calibration process (the lower the
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condition number, the better is the calibration process). Here again
we should use this information with care as the condition number may
mix data with different physical units: in general the condition number
cannot be used to compare different calibration methods

− sensitivity to measurement noise: noisy sensor measurements will be
used during the calibration, and this noise will affect the result

− choice of the calibration poses: calibration results may differ according
to the poses that are used for creating the constraints equations that
will be used for the calibration process. Hence it is necessary to deter-
mine which calibration poses will lead to the most accurate calibration

− accuracy of the calibration: clearly the best validation of a calibration
method will be experimental measurements of the deviation between
desired poses and real ones. However such measurements involve also
the control of the robot, which may introduce disturbances that are not
due to modeling errors. Hence simulation will also play an important
role, as it allows one to focus on the efficiency of the calibration process
on its own. This implies the need to define indices to characterize the
accuracy of the calibration. In most papers not all measured calibration
poses are used for the calibration process: some of them are used after
the calibration to validate the results. Still, a difficulty occurs when
comparing different calibration methods proposed in the literature, as
there is no standard calibration index nor comparison benchmark

− unicity: there must not be very different sets of geometrical parameters
that satisfy the constraint equations in a similar way

These issues will be illustrated on the 6−UPS robot. Calibration of redun-
dant robots will not be addressed: internal constraint forces may modify
the pose of the end-effector, and must be taken into account (284).

10.3. External calibration

In this method, the moving platform is placed in a certain number of poses
by using the actuated joints control, then some geometric features of the
robot are measured, with the help of an external measurement device. Note
that these measurements may also be used for designing pose corrective laws
that modify the control inputs locally (641).

10.3.1. TYPE OF EXTERNAL MEASUREMENTS

A first type of measurement consists in measuring, completely or par-
tially, the pose parameters of the platform. Complete measurements of
the location and orientation of the platform may be done with a laser
tracker (395), theodolite (662), coordinate measuring machine (123) or op-
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tical system (22). All these systems measure the location of 3 points on the
platform and reconstruct the location and orientation of the platform from
these coordinates; they are all expensive. Less expensive devices have been
proposed, as for example a set of LVDT (170); the most promising trend is
to use a vision system, a field that was pioneered by Amirat (9) and Mau-
rine (389), and recently revisited with the use of a dedicated calibration
board fixed on the platform (125)(506)∗ .

It is often claimed that a full measure of the pose parameters of the mov-
ing platform is difficult to obtain. Hence it has been proposed to measure
only some of the pose parameters, for example only 2 orientation param-
eters, by using 2 inclinometers (37). Partial measurement methods need
more calibration poses, and may not allow one to identify all kinematic
parameters.

But other geometrical features may be used for calibration purposes:
measured distances to a fixed point using a double-ball-bar (DBB) mea-
suring device (571; 615), flatness of planar motion of the robot together
with squareness of the motion according to 2 orthogonal axes (244), and
deviation of the trajectory with respect to a line (83). An original approach
consists in using a vision system not only to measure the pose of the plat-
form but also the leg directions (506).

10.3.2. CALIBRATION WITH DIRECT KINEMATICS

For the modeling of a 6−UPS robot, Masory (386) identifies 132 geometric
parameters (22 parameters per leg), and Vischer(595) 138 with a closer
analysis. This set may be reduced to 42 (the coordinates of the Ai, Bi and
the 6 length offsets) if the passive joints are assumed to be perfect. The
reduced model is motivated by the work of Wang (608), which shows that
the platform positioning is only slightly sensitive to errors in the positions
of the joints, for instance those due to manufacturing tolerances. It must
be noted however that the work of Wang was performed for a specific robot
geometry and is difficult to generalize as it is unclear whether an optimal
design (see the ”Design” chapter) may not lead to another conclusion.

In 1993 Masory proposed a calibration method (that we will call the DK
method) which is directly adapted from the one used for serial robot calibra-
tion: the constraint equations are F(ρm)−Xm = 0, where ρm,Xm are the
measured leg lengths and platform pose parameters while F represents the
direct kinematics. For each calibration pose we get 6 constraint equations,
and it is therefore necessary to have at least 22 calibration poses to identify
the full model, and 7 for the reduced model. The constraint equations are
solved with a Newton-Raphson like scheme using the pseudo-inverse of the
system. Masory and Bai(22) agree that the optimal number of calibration
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poses is approximately 10; a larger number of poses does not change the
accuracy of the calibration.

There are major drawbacks in this approach. It is necessary to assume
that the direct kinematics will always provide a real solution, and that it is
able to select, among all possible real solutions, the one corresponding to the
calibration poses (we have seen in the ”Direct Kinematics” chapter that this
is a complex issue). Given the noise on ρm, and using the direct kinematics
with various values for the geometrical parameters, it is unclear if there will
always be at least one real solution: strictly speaking the algorithm should
be adapted to deal with complex solutions, probably a difficult task.

10.3.3. CALIBRATION WITH INVERSE KINEMATICS

Wampler (601) has suggested a unified approach, the implicit loop formu-
lation, that may be used both for serial and closed chains. For parallel
robots, this approach uses the inverse kinematics. The constraint equations
are G(Xm,ρm) = 0, where G is the inverse kinematics equations. For Ma-
sory’s reduced model, the observation matrix can be calculated analytically,
and its rank is maximal for N ≥ 7 calibration poses; all parameters are ob-
servable (308). The minimal number of calibration poses is identical to that
for the DK method. The constraint equations are solved using a statistical
approach, assuming zero mean Gaussian noise on the measurements and on
the parameters, an assumption that is not really appropriate for parallel
robots. Zhuang (662) instead suggests determining P that minimizes the
sum of the squares of the constraint equations. The constraint equations
are linearized in term of the unknown parameters, and consequently the
changes in the parameters are directly obtained by solving a linear sys-
tem whose matrix, called the identification jacobian, is an approximation
to the observation matrix. It is block diagonal, hence the error parameters
of each leg can be solved independently. A similar approach was suggested
by Oliviers (455); he solves the resulting linear system by using a singu-
lar value decomposition. He then studies the influence of the measurement
noise by computing the error between the measured pose and the pose cal-
culated for the calibrated robot; it appears that the orientation part of the
pose is much more sensitive to the noise than the translation part.

A drawback of minimizing the sum of the squares of the constraint
equations has been identified by Daney (124). Daney proposes an interval
analysis based approach that determines ranges for the parameters that are
guaranteed to include the real parameter values. He then minimizes the sum
of the squares of the constraint equations by using a least-square procedure,
and notices that for some parameters the resulting values lie outside the
certified range provided by the interval method means that some of the
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constraint equations are not satisfied, even if the measurement noise is taken
into account. In another paper Daney (125) shows on experimental data
that there was no solution of the constraint equations. He then investigates
the minimal value of an εi such that there is a solution to |Gi(Xm)−ρm

i | = εi

for all calibration poses. These quantities allow one to quantify both the
quality of the measurement and the errors in the modeling. The problem of
fitting the parameters to the constraint equations and pose measurements
has also been addressed by Iurascu (278); he proposed a metric to solve
the calibration problem. He then finds a multidimensional surface in the
parameter space that is a best fit, in the sense of the metric. Even so this
best fit may still not satisfy all the constraint equations.

For the 6−UPS robot, Wampler identifies 54 parameters: 42 parameters
from Masory’s reduced model and two parameters κi, θ

off
i for each sensor,

such that the change in measured leg length is ∆ρi = κiαi+θoff
i , where αi is

the sensor reading. Wampler selects 20 calibration poses, 13 of them being
close to the boundary of the workspace. Zhuang (662) uses the Masory’s
reduced model and 12 calibration poses.

The implicit loop formulation has many advantages over the DK cali-
bration method. Tanaka (572)∗ has shown that it allows a larger error in
the initial guess of the kinematic parameters; for 7 calibrations poses the
allowed error is 23%, and only 3.5% for the DK method. This method al-
lows us to avoid the calculation of the direct kinematics (and is therefore
faster than the DK method) and the management of the multiple solutions
of the direct kinematics. This method has also been validated on robots
with less than 6 d.o.f. by Vischer (596)∗. In that case this author gives a
rule of thumb for the accuracy of the external measurement system: this
accuracy should be at least ten times better that the expected gain in the
location of the joints (to get this location with an error of 1/10 mm we
need to use sensors whose accuracy is better than 1/100 mm).

10.3.4. CALIBRATION WITH CONSTANT LEG LENGTHS

Zhuang (659) proposes another method, later modified by Geng (181). This
method relies on the measurement of the position and of the orientation
of the platform in various poses in which certain link lengths are kept con-
stant. The initial set of constraint equation for leg i is Gi(Xm)−ρm

i +li = 0,
where ρm

i is the sensor measurement, and li the leg length offset. Consider
a set k of calibration poses where the link i length is kept constant: sub-
tracting the above equation obtained for one calibration pose from the
equations obtained for the other calibration poses we get a set of k−1 con-
straint equations in which the unknowns li no longer appear. As Zhuang
considers Masory’s the reduced model, there are 6 unknowns in the con-
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straint equations for leg i and hence only 7 measurements are necessary
to obtain a system of 6 equations in these 6 unknowns. When solved, the
seventh measurement is used to calculate all the li. Geng also shows that
carefully choosing the measurement configurations allows us to use only 13
measurements to calibrate the 6 links. The simulation results show that
it is better to take measurement configurations in which only 3 links pos-
sess fixed lengths; this allows for a larger change in the moving platform
configurations.

10.3.5. CALIBRATION WITH OTHER GEOMETRICAL ELEMENTS

Huang (244) proposes using two types of measurements for calibration :

− flatness: theoretically the robot performs a motion in a fixed x−y plane,
and the distance variations along the z axis are measured by a dial

− straightness and squareness: theoretically the robot performs a motion
along the x axis, and a dial measures the motion variation in this
direction. Similar motion may be performed along the y axis and the
dial may be used to evaluate the orthogonality of the motion

The orientation at one calibration pose is measured also. The purpose of
such a method is to allow the use of low cost measurement devices. However
Huang mentions the use of 154 measurements, thus leading to a lengthy
calibration process.

Takeda (571) proposes using a double-ball-bar (DBB) measuring de-
vice. The robot performs circular paths, and the deviation from circularity
is measured by the DBB. He proposes an algorithm to determine which cir-
cular paths should be used for the calibration. Experimental results show
that the circularity error on a test path was greatly decreased after cali-
bration, although not all kinematic parameters are observable.

Chai (83) defines a straight line trajectory and uses a laser beam to
measure the deviation of the end-effector with respect to this line. Such a
measurement does not allow a full calibration of the robot, but Chai’s pur-
pose is just to correct the leg length measurement to minimize the deviation
from the straight line trajectory. Experimental tests on a commercial robot
seem to show that there was a leg length offset. This offset was identified,
and after correction the deviation on the test trajectory was reduced by a
factor of 7. However this should be confirmed by further tests on the whole
workspace of the robot.

The vision-based approach proposed by Renaud (506) combines mea-
surements on the end-effector poses with a specific calibration board and
observation of the leg directions. This approach was validated on the 4 d.o.f.
I4 robot with 40 calibration poses.
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10.3.6. UNICITY OF THE SOLUTION

The problem of the unicity of the solution of the constraint equations has
been addressed by Innocenti (274) in a paper in which he suggests two
calibration procedures. His first method uses 7 calibration poses. The link
lengths then give 42 equations in the 36 unknowns that are the coordinates
of Ai, Bi. For a given calibration pose all 6 equations giving the leg length
as functions of the pose parameters include the term x2

c +y2
c +z2. Innocenti

suggests subtracting one leg length equation from each of the remaining
5 in order to get rid of this term. Hence he ends up with an algebraic
system of 36 equations in 36 unknowns. By elimination, Innocenti shows
that this system may be reduced to a 20 degree polynomial equation in
one unknown (this result is closely related to the problem of finding an SS
chain supporting a rigid body that has the same length for 7 poses of this
body (365)). Hence there is no guarantee that the solution of the calibration
problem is unique, even in the absence of noise.

In a second method Innocenti includes the offset of the link lengths as
unknowns, and works on the previous principle, although with 8 calibra-
tion poses. He again shows that solving the obtained system is equivalent
to solving a 20 degree polynomial equation in one unknown: a numeri-
cal minimization method such as that of Geng converges towards one of
the 20 solutions, although there is no guarantee that this solution is effec-
tively better than the initial estimate. Note also that it is unclear if adding
calibration poses may always lead to a unique solution of the calibration
problem.

10.3.7. OBSERVABILITY

Measuring all pose parameters at the calibration poses may be difficult and
tedious. It has been suggested to measure only the location of the platform
and not its orientation. Unfortunately, in that case, not all parameters may
be identified (572)∗ with the constraint equations. For example, in Masory’s
reduced model, the observation matrix has rank 39, i.e. 3 parameters cannot
be identified (308). Daney (121) suggests another method, the elimination
of the orientation parameters in the constraint equations, so that the con-
straint equations are orientation free, and only the location of the platform
has to be measured. Simulation results seem to show that the method is
promising. Alternatively, the orientation may be measured only at some
calibration poses; it has been shown in fact that measuring the orientation
at one calibration pose is sufficient (572)∗.

Oliviers (455) obtains the following results if a linearized version of the
constraint equations is used:
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− if one of the coordinates of C is not measured while all the orientation
parameters are measured, then a constant offset error will appear in
the direction of the unmeasured coordinates

− if the location of C is not measured while all the orientation parameters
are measured, then the linearized system becomes singular

− if one orientation angle is not measured, then a constant orientation
error will occur

If only 2 orientation angles are measured (for example using 2 orthogonal
inclinometers (37)) the rank of the observation matrix for Masory’s reduced
model (to which is added as unknown the angle between the inclinometers)
is 36 i.e. 7 parameters cannot be identified (308).

10.4. Auto-calibration

There are two possible approaches to auto-calibration:

− the robot has more internal sensors than strictly necessary for control
− a redundant instrumented passive leg is added to the robot

Using redundant internal sensors is the method suggested by Nahvi (438)
for a 4 d.o.f. robot; by Zhuang (661) which uses 6 additional sensors, one
for each of the U joint of the legs for 6−UPS robots; and by Yang for a
three-legged robot (633). As no independent reference frame is used, the
base and mobile frame may be chosen in such way that A1, B1 are the ori-
gins of the frames, A2, B2 lie on the x axes of the frames and A3, B3 have a
zero z coordinate. Hence Masory’s reduced model has only 30 independent
parameters, and Zhuang shows that the rank of its observation matrix is
30 i.e. maximal. If only one additional sensor is used, the rank of the ob-
servation matrix is still 30, but the condition number of the observation
matrix is about 5 times the one with 6 additional sensors (308). It is some-
times mentioned that enabling only a relative calibration is a drawback of
the auto-calibration approach, but in most application cases all motions
are specified relative to the base frame. Furthermore we have seen in the
chapter ”Direct kinematics”, that adding sensors allows us to simplify, and
speed up the direct kinematics problem, and hence auto-calibration is very
promising.

Chiu (96) calibrates a 4 d.o.f. robot that has the structure of a 6−UPS
robot constrained by a seventh leg. This extensible leg is connected to the
base by a U joint, is fixed on the platform, and its extension is measured by
a linear sensor. However the method is restricted to specific architectures,
and the seventh leg may drastically reduce the workspace of the robot by
interfering with the other legs.
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10.5. Calibration with mechanical constraints

In this method, mechanical constraints are imposed on the robot during the
calibration process through a locking device. With these constraints, some
geometrical parameters will remain constant during the calibration, and
the constraint equations will describe the invariance of these parameters.

Khalil (307) suggests clamping one or more links of a Gough platform,
so that its direction remains the same for a set of calibration poses. The
constraint equations indicate that this direction remains constant for all
poses; these equations are functions only of the geometrical parameters of
the robot and the link lengths. This method has the advantage that there is
no need to have extra sensors, but solving the system so obtained, especially
taking into account the errors in measurements of the lengths of the links
is a difficult problem (119; 120). For Masory’s reduced model, if one U or
S joint of a leg is locked, the rank of the observation matrix is 29 i.e. 13
parameters are not observable. If during the calibration different joints are
locked, the rank of the observation matrix becomes 30 (308).

Rauf (497) proposes using a locking device that allows only rotation
of the platform around a fixed point (or alternatively around a point that
can also translate along a given direction). Constraint equations may be
obtained by writing that the coordinates of the rotation center are fixed,
but this implies the use of the direct kinematics. Alternatively, the inverse
kinematics may be used: 3 legs are used actively to apply a given orientation
to the platform, the 3 other legs are passive and provide the measurements.
Passive and active legs must be swapped during the process. Rauf notes that
the best calibration results are obtained with large ranges of orientation
angles. Observability of this method has still to be assessed.

This method is less expensive than external calibration, but more dif-
ficult to use than auto-calibration. As it does not allow one to use the
full workspace of the robot, it may be thought that it will be less accurate
than external and auto calibration. Its main drawback is that the actuators
should be able to move passively according to the load to which they are
submitted.

10.6. Determination of the calibration poses

For external and constrained calibrations it is necessary to choose the cal-
ibration poses. In many papers, random poses are selected, but it was ob-
served that the quality of the calibration varied significantly according to
the set of selected poses. Determining the best calibration poses was ad-
dressed by Nahvi (439) and Lintott (368) (for the Delta robot), who decided
to find the poses of the end-effector so that a conditioning index for the ob-
servation matrix JP is maximized. Various indices are defined, based on the
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singular values of the observation matrix. According to Daney (126), the
best index is O1, the square root of the determinant of JT

PJP , although the
ratio between the square of the minimal singular value and the largest one
(the noise amplification index (439)) may be of interest. The maximization
of the index leads to poses which are on the edge of the articular workspace,
and near singular configurations (368), which is a problem. Convergence to-
ward singularity has to be expected; singular poses have maximal sensitivity
of the platform motion to changes in the leg lengths.

Daney (122) proposes a method that may fail to find the calibration
poses that maximize the conditioning index, but ensures that the calibra-
tion poses satisfy constraints, such as being in the workspace or not being
singular. He notices that all calculated calibration poses are close to the
articular workspace boundary (as intuitively suggested in (395)). In a fol-
lowing paper (126) he proposes the use of heuristics that may avoid the
problem of local maxima of the conditioning index, and that mixes 2 differ-
ent indices. He still observes that the calibration poses lie on the articular
workspace, and that they are radially symmetric, as was the calibrated
robot. These works were validated through experimental data.

10.7. Exercises

Exercise 10.1: Suggest a calibration method for the robot Hexa, based
on Geng’s method. What is the minimum number of measurements needed
to calibrate one chain?
Problem 10.1: Given the measurements accuracy, is it possible to deter-
mine the poses of a 6−UPS robot so that the best calibration results are
obtained?
Problem 10.2: Define quality indices for calibration methods that in-
clude measurement noises, and may be used either in simulation or with
experimental data
Problem 10.3: Determine general rules to identify the elements of the
geometry of a 6−UPS robot that play the most influential role on the
positioning errors of the robot
Problem 10.4: Given a calibration method, an associated observation
matrix, and bounds on the measurement errors, find the calibration poses
that minimize the errors on the kinematic parameters, while ensuring that
the calibration poses are not singular, and lie in the workspace of the robot
Problem 10.5: Assuming perfect joint and pose measurements, determine
the minimal number of calibration poses for a given parallel robot so that
the constraint equations will lead to a unique solution of the calibration
problem
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Design

This chapter will deal with the problem of designing parallel robots. We first
have to choose the mechanical architecture, a problem that has been treated
in the Chapter Synthesis and Architectures. Then we must determine the
dimensions of the robot so that it complies as closely as possible with
the performance needed for the task at hand. Indeed a direct result of the
previous chapters is that the performance of a parallel robot is so dependent
on its dimensions that a customization of the robot is absolutely necessary.
We will describe the main approaches for solving this problem, even if only
partially.

11.1. Introduction

The importance of design may be illustrated by a quote from Paul Sheldon,
the designer of the Variax machine-tool: ”The Variax, which is now over 10
years old, still stands as an existence proof of PKM potential. For instance,
it is 3 to 6 times stiffer than a typical good conventional machining cen-
ter. But the many PKMs erroneously conceived and poorly executed since
then have proven inferior to conventional approaches and have deterred the
advance of the art...This sort of thing certainly does not instill confidence
in the minds of potential customers, or encourage researchers to explore
the technology.” Fortunately parallel robots have shown their utility in var-
ious applications as we have already mentioned, and numerous examples
show that a careful design optimization lead to large improvements over
the initial design (42).

In order to design a mechanism, we first need to choose a mechanical
architecture; this may be obtained either by a synthesis starting from the
constraints on the task (mainly the number of d.o.f. required by the task),
or by using an a priori solution. Secondly, the chosen mechanical archi-
tecture must be modeled, and the model then used to make a geometric
synthesis, i.e. to determine the physical and geometrical characteristics of
the mechanism that are the most appropriate for the task.

A first approach to geometric synthesis is trial and error, which con-
sists in manually modifying the geometry of the mechanism, then evaluat-
ing the performance of the new mechanism after each modification, with

301
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the help of a simulation software, until a mechanism is obtained that is
deemed satisfactory. This approach relies on an efficient simulation sys-
tem. Usual mechanical simulation software are not really efficient for the
analysis of closed-loop mechanisms, and a general simulation system for
parallel robot is difficult to design because of the diversity of the possible
mechanical architectures. There are only a few generic simulation systems
that have been proposed: kinematic simulation based on bond-graphs (651),
or the Map dynamic simulator (299) but new projects are going on (104;
167) such as the Synthetica software (557). Some believe that the task of de-
veloping an efficient generic simulation software is so huge (and urgent) that
it will require a collaborative world-wide effort. Even for a specific archi-
tecture there are very few simulation systems1: one for planar robots (524),
one for 3 d.o.f. spherical robots (Smaps (196)) and the RT4PM software for
various manipulators (34). An on-line web service that allows workspace,
error and conditioning analysis is also available� AWE. In any case, the
number of parameters necessary to define the geometry of a parallel robot
makes it difficult to use trial and error. Indeed we have already seen in
the previous chapters that geometric parameters such as joint layout, link
lengths, passive joint motion abilities, etc . . . have a very important in-
fluence on the performance of the resulting mechanism. The number of
design parameters does not allow to use a brute force approach where each
design parameter is sampled, and the robot performances tested for each
combination.

Instead of using the trial and error approach, we may try to identify
the influence of the design parameters on the performances. For example
Ji (288) proposed an approach for studying the influence of the layout of
the joint centers of a 6−UPS robot on the workspace. But this influence
on one performance is already complex, and if more than one performance
is considered, the coupling effect becomes difficult to manage.

Hence a more systematic design methodology has to be used. A general
approach is called optimal design: a procedure is used to determine the
geometry of the mechanism such that the performances requirements are
satisfied at best. This is a complex issue for the following reasons;

− the number of design parameters is large: we have already seen in the
”Calibration” chapter that for a 6−UPS we need 36 kinematic param-
eters to define the geometry of the robot. We will need 12 more to de-
fine the minimum and maximum leg lengths just to perform workspace,
accuracy, static and velocity analysis.

− performance analysis is already complex: we have already seen that
performance analysis of a given robot is a complex problem for which

1A software for visualizing various parallel planar and spatial robots is available via
anonymous ftp, directory coprin/Visu
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there are only partial solutions

The starting point of an optimal design approach is a list of specifica-
tions that indicates which performances are required for the robot according
to the task (see an example for a machine-tool in (614)). In practice there
are always multiple performance requirements to be satisfied. They can be
categorized as follows:

− imperative: these performance requirements must be satisfied for any
design solution

− optimal: a performance index is associated to the requirement and a
maximal value of this index is required

− primary: although these performance requirements are specified in the
specifications, their values may be modified to some extent if no design
solution is found

− secondary: these requirements may not appear in the specifications
list, but may be used to choose between design solutions that satisfy
imperative, optimal and primary requirements

Usually we will attach some indices to each requirement that will allow
us to determine to what extent the requirement is satisfied or violated.
We will assume that these indices measure how much the requirements is
violated, and increase with the violation of the requirement. With these
indices we will see that a pair of performance requirements may also be
classified according to the sign of their rates of change (RC) when the
design parameters are modified:

− antagonistic: the sign of the RC for all performances indices for one
requirement is always the opposite of the sign of the RC for all perfor-
mance indices of the other requirement

− related: the RC between the two requirements are related, but the
product of their sign may change according to the modified design
parameters and/or their values

− independent: the RC of the performance indices are not related

The concept of ”optimal design” applies only if there is at least one optimal
performance requirements in the list of specifications. If there is one optimal
requirement there will usually be one design solution. For more than one
optimal requirements there usually will be no solution except if the optimal
requirements are independent.

In our experience there is usually no optimal requirement for practical
applications, as the list of specifications includes only imperative and pri-
mary requirements. In that case we have an appropriate design problem,
and there may be multiple design solutions.
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11.2. Reducing the number of design parameters

Clearly the first task of a designer is to try to reduce the number of design
parameters. For example, it will be quite difficult to manage the 132 pa-
rameters identified by Masory (386) that define the basic geometry of an
6−UPS robot, and are not even sufficient to manage a workspace require-
ments (the minimal and maximal leg lengths should be added).

There are no simple guidelines for reducing the number of design pa-
rameters. If we consider a 6−UPS robot, and if the task is symmetrical,
we may assume that the attachments points Ai, Bi are coplanar and lie on
circles of radius R1, r1, and that they are symmetrically disposed, with a
separation angle α for 2 adjacent attachment points Ai on the base, and β
for 2 adjacent attachment points Bi on the platform (figure 11.1). Hence
we end up with 4 design parameters for the geometry of the robot. We may
assume that the minimal and maximal leg lengths are identical for all legs;
this will add 2 more design parameters. Note that this simplified layout
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Figure 11.1. Simplified modeling of a 6−UPS robot

assumes planar base and platform, although non planar layout may be of
interest, as mentioned by Bryfogle (63).

Note that this reduced model still allows us to deal with other design
parameters that have an influence on specific performances. For example,
it is good policy to offset the axis of the U , S joints to limit the influence
of their mechanical limits on the workspace. It is generally considered that
a good compromise for the directions of these joints corresponding to a
zero angular motion are the directions of the legs when the actuators are
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at mid-stroke. Note that it has never been proved however that this is the
optimal solution.

We will now investigate how design solution(s) may be determined.

11.3. The atlas approach

The idea of the atlas approach is first to reduce the number of design pa-
rameters to 2 or 3, so that performance indices may be graphically repre-
sented as atlases. The designer then uses these atlases to choose the design
parameters.

An example of such an approach is proposed by Bhattacharya (38) for
a 6−UPS robot. He uses a reduced set of 3 design parameters: r1/R1,
ρmax/R1, and β (the angle α is assumed to be fixed). The underlying as-
sumption when normalizing by R1 is that the performance indices depend
only on the normalized parameters, an assumption that has to be verified
(see exercise 11.1). Bhattacharya then calculates the average value of stiff-
ness related indices over the workspace by using a discretisation method,
and draws curves that show the value of the various criteria as functions
of the design parameters; this allows him to choose the best geometry for
the robot. The atlas approach has also been used by Clavel (100) for the
dimensioning of the Delta robot. For the 3−UPU robot Badescu plots the
workspace volume, the average of the inverse of the condition number and
the GCI (21); Hong (238) defines global torque, force and velocity ma-
nipulability measures, and plots them as function of 2 design parameters.
Liu (373)∗ plots the distribution of the shape of the workspace of planar
and spatial robot in the design parameter space, while Williams (621) and
Ceccarelli (77) propose atlases that illustrate the influence of the design pa-
rameters on the workspace size. Masuda (387) plots various manipulability
measures as functions of the design parameters in order to choose the best
design of a 6−PUS robot.

Clearly the atlas approach is very limited, and may be used only for a
very small set of design parameters.

11.4. The cost function approach

In the literature, the most used design methodology for parallel robot is the
cost function approach. This classical approach in mechanism theory (156)
may be summarized as follows:

1. combine the m performance requirements indices I1, . . . ,Im in a weighted
sum C =

∑j=m
j=1 wjIj called the cost function

2. find the set of design parameters P that minimizes the cost function
by using a numerical procedure
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A synthesis of the optimization methods that are used in mechanism the-
ory may be found in (156). This approach is a particular instance of a
classical design methodology that relies on the optimization of a function
to determine the design solutions, but it does not have the property of
other functions, whose purpose is to decrease the sensitivity of the design
to variations in the design parameters (which is the purpose of other design
methods such as Taguchi’s).

This approach presents numerous disadvantages2:

− if only one criterion is used in the cost-function, the results can be mis-
leading: thus Gosselin showed that the SSM with maximal workspace
volume for a given stroke of the actuator has similar base and moving
platform (see figure 7.17) and is therefore singular. Singularity consid-
eration is an example of a hidden criterion that does not necessarily
appear in the specifications list provided by the user, although the
designer must always consider it.

− the approach is able to obtain the Pareto set3 only when the set is
convex

− determining numerical weights to describe the designer preferences is
difficult and tedious, and the results strongly depend on the weights

− the numerical optimization procedure will make an extensive use of
the evaluation of the cost function. Hence the calculation of the per-
formance indices must be very fast. But we have seen in the previous
chapters that for most indices the exact calculation of the indices was
expensive. Two approaches are used to deal with this problem:

• performances indices are computed using a discretisation method:
this induces discontinuity in the calculation of the indices, and this
may be a problem for the optimization procedure. Furthermore,
there is no guarantee on the optimality of the result

• performances indices are computed only at poses that are consid-
ered significant with respect to the performance. This is probably
more effective than the previous approach, but a careful check of
the design solution has to be made

− the approach does not ensure that imperative requirements are satis-
fied. A classical way to manage this problem is to impose imperative
requirements as penalty constraints to the optimization problem, but
this complicates the procedure

2for an extensive study of these drawbacks see Das, I. and Dennis, J.E., ”A closer
look at drawbacks of minimizing weighted sums of objectives for Pareto set generation
in multicriteria optimization problem”, Structural Optimization, Vol 14, 1997, pp 63-69

3a point x0 is called a Pareto solution if there is no other feasible point x such that
fi(x) ≤ fi(x

0), i = 1, . . . , m with strict inequality for at least one i, see (92)
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− it is necessary to constrain the value of the design parameters so that
unrealistic values are not obtained. This complicates the optimization
problem

− usually only one design solution is obtained (or a limited number if
the optimization procedure is run with different initial guesses). There
is no guarantee that the actual physical robot based on the design
solution, but differing from it because of manufacturing tolerances, will
still be optimal or satisfy the specifications. It is therefore necessary
to investigate the effects of small changes on the design solution, a
process often referred to as post optimality analysis. Furthermore, we
believe that not all design constraints may be mastered by the designer
(for instance economic constraints, such as privileged relation with a
supplier, may influence the choice of the hardware)

In spite of all these drawbacks, the cost function approach is the method
that is favored in the robotics literature. We will mention here a few char-
acteristic examples; other examples may be found in the references Web
page. Numerous papers consider only one performance index, the condition
number of the inverse jacobian matrix (or the global conditioning index,
GCI, i.e. the average value of the condition number over the workspace,
see section 5.4.2.4) (196)∗, (356; 380; 479; 552), sometimes with the ad-
ditional constraint that a prescribed workspace should be obtained (516;
545). Related to this approach is the search for an isotropic robot (i.e. a
robot for which there is at least one pose for which the condition number of
the inverse jacobian matrix is 1). For example Zanganeh (649) determined
the constraint on the layout of the joint centers of a SSM so that it becomes
isotropic in a given pose: he then shows that, in general, it is not possible
to design an isotropic SSM. Various authors have addressed this topic (11;
27; 73; 160; 584; 619). In our experience we have never encountered an
application in which only one performance index has to be considered. Fur-
thermore, we have seen in the ”Velocity” chapter that the validity of the
condition number to qualify the accuracy of the robot was doubtful, and
that the GCI was difficult to calculate. As for the isotropy, considering that
a robot is optimal because it is isotropic in one pose sounds strange (what
will happen in the other poses of the workspace?).

Other one dimensional cost functions have been considered: Kim op-
timizes the average stiffness of a 3 d.o.f. robot over its workspace (316)∗,
Chakarov (85) suggests an optimization approach to determine the neces-
sary stiffness in the links for a specified stiffness at the end-effector level
for different poses, while Carretero (72) minimizes the unwanted d.o.f. of a
3 d.o.f. robot. Salcudean (517) has studied the influence of the radii of the
platforms of a SSM on the joint forces necessary to obtain a given accel-
eration of the platform. Stoughton (555) considers the overall shape of the
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workspace of a parallel micro-robot and tries to get it as close as possible
to a sphere. Han (213) suggests determining the dimensions of the 4-bar
mechanisms that actuate his robot so that the workspace is maximal, and
ensure the lowest mass of the moving element.

There are other examples for which the cost function has only one term,
but the optimization is performed under the constraint that include other
performances: Ottaviano optimizes a criterion related to the overall size of
the robot, while constraining the orientation workspace to be close to a
prescribed one (457); Lou’s (379)∗ objective is to have a given workspace
included in the robot workspace, while the condition number in the pre-
scribed workspace is low. This objective is converted into an optimization
problem with LMI constraints. Han (213)∗ minimizes the weight of the legs
of his micro-robot subject to constraints on their displacement, axial and
buckling stresses.

The cost function may also have different terms related to the same
performance criterion, such as mean value and standard deviation of the
element of the stiffness matrix over the workspace (654)∗.

Cost functions with mixed terms have also been considered. Khatib (310)
introduces a cost function to quantify the dynamic performances of his 3-
d.o.f. robot Artisan (figure 2.17). This function possesses several terms that
evaluate the inertial behavior and the isotropy of the acceleration perfor-
mances. He uses a numerical procedure to find the parameters that optimize
the average of the cost function, as calculated over a finite number of poses.
Stock (553) uses a cost function mixing manipulability and workspace re-
quirement for a Delta robot. Stamper (550) uses both the workspace volume
and a global conditioning index to optimize the design of a 3-d.o.f. transla-
tory robot. Arsenault (16) combines a workspace requirement, the GCI and
a binary index that indicates the presence of singularity in the workspace.
Miller (420) proposes, for a 3 d.o.f. translational robot, a cost function
that combines the GCI, and the ratio (workspace volume)/(volume of the
robot’s bounding box).

One way to avoid the problems related to mixing terms in the cost
function is to consider only one performance index which already includes
other primary requirements. For example Monsarrat (428) proposes finding
the design parameters of a 6 d.o.f. robot that maximizes the volume of its
singularity-free 3D constant orientation workspace.

As the optimization problem is often quite difficult, the use of genetic al-
gorithms is sometimes mentioned, either to minimize the cost function (54),
(558)∗,(654) or to generate new design solutions that are then checked with
respect to simplified design requirements (357).

Note that other cost-functions may be defined. In the Compromise Pro-
gramming approach (91) the utopia point is defined as that with coordi-



DESIGN 309

nates are the minimal values of all the performance indices, assuming that a
lower index provides a better design. The cost function is then defined as a
weighted distance between the utopia point and the performance indices. In
the Physical Programming approach (92) there is no need to define weights.
Classes of constraints on the performance index are defined, and for each
class a degree of desirability, from highly desirable to unacceptable, is de-
fined for different ranges for the index value. A cost function taking into
account the desirability may then be defined, imperative requirements being
considered as constraints for the optimization. Although these approaches
will most probably give better results than the weighted sum cost function,
they share its drawbacks: it is difficult to define the index. it is difficult to
calculate it, it is difficult to manage the various design requirements, and
the method may not be robust with respect to tolerances.

11.5. The exact synthesis approach

It may happen that, after reduction of the number of parameters, all ap-
propriate design solutions may be found analytically; we will call this case
the exact synthesis case. For example, Chablat (81) is able to determine the
dimensioning of the 3 d.o.f. translational Orthoglide (figure 2.8) so that its
workspace includes a prescribed workspace, and such that the eigenvalues
of J−T

k J−1
k , where J−1

k is the inverse kinematic jacobian, lie within a given
range for all poses in the prescribed workspace. Huang (242) was able to
determine analytically the actuator stroke of a 6−PUS robot so that its
workspace includes a prescribed translational workspace with a minimum
reachable yaw angle. Exact synthesis may also be obtained if it is assumed
that the specifications are to be satisfied only at a limited number of poses.
For example, Simaan (541) determines what should be the design param-
eters to obtain a given stiffness matrix at a given pose, while Jafari (280)
proposes a method for designing a 6−UPS robot so that J−T

fk J−1
fk is diagonal

at a given pose, the purpose being to obtain given maximal translational
and angular velocities at this pose.

We will now describe more precisely an exact synthesis method for im-
portant requirements: workspace and velocity.

11.5.1. WORKSPACE SYNTHESIS

Workspace requirement is always present in a specification list, and is often
seen as an imperative requirement, or a least a primary one. In recent
years, many papers have addressed the issue of designing a robot for a
given workspace. The proposed approaches may be classified as follows:
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− precision poses approach: a set of poses is specified, and the design
parameters are determined so that the workspace of the robot in-
cludes these poses. This approach has been used for 3-RPR planar
robots (434; 536), 3 d.o.f. spherical robots (343), for the Delta robot
and a spherical wrist (331)∗, or with a general purpose application in
mind (470). In some relatively simple cases it is possible to determine
analytically all the values of the design parameters such that the pre-
cision poses are included in the corresponding workspace. In that case,
another primary requirement index, as the GCI (331), is considered,
and an optimization procedure is used to find its best value over the
region determined in the workspace step. However, in most cases, only
a limited number of precision poses may be specified, and finding the
design parameters is a difficult task (315). McCarthy and co-workers
have developed a general strategy for that task, and included it in the
simulation software Synthetica (557), while emphasizing the specifici-
ties of mechanism design within the more general framework of optimal
design (392)

− trajectory approach: a set of trajectories that must be included in the
workspace is specified, and the design algorithm must find the corre-
sponding design parameters. In (406) we presented such an algorithm
that was designed for 6−UPS robots, but may be extended to other
types of parallel robots. The design parameters are only the radii R1, r1

of the base and of the platform, so that we can graphically represent
the result in the R1−r1 plane. It is assumed that the orientation of the
end-effector is constant for each trajectory, but may change between 2
trajectories. The constraints are that the leg lengths should lie within a
given range [ρmin,ρmax]. The main theoretical results are the following:

• for a given trajectory the leg lengths will be less than or equal to
ρmax if the design parameters R1, r1 belong to the intersection of
2 ellipses E(0), E(1) in the R1−r1 plane, that can be computed
from the start and goal point of the trajectory

• for a given trajectory, the leg lengths will be greater than or equal
to ρmin if the design parameters R1, r1 do not belong to any mem-
ber of a one-dimensional set of ellipsis Es(λ), where λ is the pa-
rameter of the set and has a value in [0,1]

In (406) we show how to compute the domains S1 = E(0) ∩ E(1),
S2 = ∪Es(λ) ∀ λ ∈ [0, 1], and S3 = S1−S2. The domain S3 then rep-
resents all possible values of the design parameters: a robot designed
with R1, r1 in S3 will have a workspace that includes the trajectory.
Figure 11.2 shows an example of such a calculation, obtained in about
50 ms on a DELL D400, 1.2 Ghz. For a set of trajectories, the intersec-
tion of the S3 leads to the domain in the R1, r1 plane that defines all
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possible values of R1, r1 for which the corresponding robot will have
a workspace that includes all the desired trajectories. This algorithm
may be extended to include the mechanical limits of the joints in A,B,
if we adopt the constraint model as described in the ”Workspace”
chapter. This algorithm may be extended to deal with other types of
parallel robots.

E(0) ∩ E(1) ∪Es(λ)

Figure 11.2. All the drawings are shown in the R1, r1 plane. For a given trajectory, that
must be included in the workspace, we are able to calculate 2 ellipses E(0), E(1) such
that if (R1, r1) belongs to E(0) ∩ E(1), then for all poses on the trajectory ρ ≤ ρmax.
We are also able to calculate a one-dimensional set of ellipses Es(λ) such that if (R1, r1)
does not belong to ∪Es(λ), then for all poses on the trajectory ρ ≥ ρmin. On the left, the
thin lines represent the ellipses E(0), E(1), and the dotted lines show two of the ellipses
Es(λ). We calculate the intersection S1 of E(0), E(1), then the union S2 of the ellipses
Es(λ) (in bold). Lastly, we subtract the union S2 of the Es from S1: the resulting domain
gives all robots whose workspace will include the trajectory

11.5.2. VELOCITY SYNTHESIS

Constraints on the end-effector velocity may also be part of the specifica-
tions list. In (405) we have addressed the following problem for a 6−UPS
robot whose design parameters are R1, r1: given a bounds on the joint ve-
locities determine the region Z of the plane R1, r1 such that the center C of
the moving platform may reach a fixed velocity in a given direction, what-
ever is its location on a set of trajectories. We showed that various conics
in the R1, r1 plane where playing a role by splitting the plane into various
regions, and that Z was obtained by performing union and intersection
operations on these regions. Here again the algorithm provides all possi-
ble values of R1, r1 for which the specification will be satisfied. Figure 11.3
presents one example with the conics that play a role, and the resulting Z.
The computation time is about 250 ms on a DELL D400, 1.2 Ghz.
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Figure 11.3. In the R1, r1 plane we may calculate a region Z (in bold) such that the
corresponding robots will be able to reach a given end-effector velocity for bounded joint
velocities, whatever the pose on a given trajectory. This calculation involves union and
intersection of regions that are bounded by conics, some of them being shown in thin line
on the figure.

11.6. The parameter space approach

As seen in the introduction in most practical design problems we have to
find appropriate design solutions and not optimal ones. The objectives of
the parameter space approach are as follows:

− to propose not one design solution but a set of design solutions
− to guarantee that all design solutions satisfy the imperative require-

ments
− to guarantee that all design solutions are robust with respect to man-

ufacturing tolerances i.e. the design parameter values of the real robot
may differ from the theoretical design solutions by bounded tolerances,
but the real robot will still satisfy the imperative requirements

− to offer various design solutions with different compromises on the
secondary requirements

11.6.1. THE PARAMETER SPACE

The key-point of this approach is the concept of the parameter space. Each
dimension of this space represents a design parameter, and consequently a
point in this space represents a unique geometry for the robot. Searching
for an optimal or appropriate robot therefore consists in finding the loca-
tion of the points in the parameter space, such that the specifications list is
best satisfied. Although in theory the parameter space is unbounded, prac-
tical considerations on each design parameter generally restricts its value
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to some range. Hence the search for an optimal robot will have to be done
only within a bounded domain of the parameter space, which we will call
the search space. In the previous section we presented an example of a pa-
rameter space, the R1, r1 plane, for the 6−UPS robot. In this section we
will present examples that show that we can deal with a larger number of
design parameters.

11.6.2. PRINCIPLE OF THE METHOD

In the previous section we have seen that it was possible in some cases
to design algorithms that calculate all the possible values of the design
parameters, so that the corresponding robots satisfy, at least partially, one
specific requirements. In terms of parameter space, this calculation amounts
to determining a domain of the parameter space which includes all geome-
tries satisfying a given requirement: such domain will be called the allowed
region for the requirement. The design of algorithms for calculating the
allowed regions is central in the parameter space approach.

The steps of the method are as follows:

1. define the parameter space
2. compute the allowed region for each requirement in the specification

list
3. compute the intersection of all allowed regions: any robot geometry

represented by a point in this intersection satisfies all specifications
4. determine a set of appropriate robots by sampling the intersection

so that all various compromises for the secondary requirements are
presented in the set, and verify that they satisfy all the primary re-
quirements

All these steps of this theoretical method will be detailed in the following
sections, and mostly illustrated on 6−UPS and 6−PUS robots.

11.6.3. CALCULATION OF THE ALLOWED REGIONS

As mentioned previously, the calculation of the allowed regions is the cen-
tral point of the method. Ideally an allowed region algorithm should be able
to solve the following problem: find all possible design parameters P in the
search domain such that some given relations F(P,X) are satisfied for all
poses in a given workspace W. The relation F, called the requirement con-
straint, will involve all the performance indices that have been mentioned in
the previous chapters. As we have already seen the evaluation of these per-
formance indices for a given robot, introducing additional unknowns with
the design parameters will complicate the task. On the other hand practi-
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cal and theoretical considerations will play an important role in getting a
tractable problem:
− H1, completeness of the result: it is not necessary to determine the

allowed region exactly. Indeed, as the design parameters will be sub-
mitted to tolerances, point on the border of the allowed region cannot
be chosen as nominal value for the design parameters as the physical
instance may be outside of the allowed region

− H2, completeness of the verification of the requirement constraint: for
a requirement constraint involving the verification of an inequality
F(P,X) ≤ 0 it is not necessary to calculate the values of F exactly
but just to ensure that its maximal value is indeed negative. In pre-
vious chapters we have already presented algorithms that are able to
provide approximations to the maximal values for F with arbitrary
accuracy. These algorithms have a computation time that changes ac-
cording to the accuracy, and may thus be very fast in a verification
framework

− H3, relaxation of the workspace constraints: for simplifying the calcu-
lation of the allowed region it is possible to assume that the workspace
is reduced to a set of characteristic elements such as poses, or segments
between two poses. This impose only an additional verification step,
after completing the design process, in which the design solution per-
formances are checked with respect to the specification list over the
whole workspace. We will see that if an algorithm for the calculation
of the allowed region for a relaxed version of the workspace has been
designed for a specific requirement, then it is possible in general to pro-
duce a variant of this algorithm for the verification of the requirement
over the whole workspace for a set of design solutions

− H4, distributed implementation: design is in general computer inten-
sive. But computer science now offers powerful tools for the distribu-
tion of heavy calculations over a network of computers. Hence design
algorithms that allow for distributed calculation should be favored

Another necessary feature of the calculation is that the description of the
resulting allowed region should be convenient for later intersection with
other allowed regions.

Clearly, we should seek as much as possible analytic descriptions of
the allowed regions (for example as presented in section 11.5.1) but such
descriptions are difficult to obtain for relatively large number of design
parameters or for complicated specification.

In our opinion, interval analysis is once again an appropriate tool for
computing the allowed region, provided the number of parameters is rel-
atively small, as it allows us to design a generic algorithm for computing
allowed regions. For that we use the algorithms C based on interval analy-
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sis presented in the previous chapters that, given ranges for the unknowns,
determine 3 different states for a property in F: verified, violated or cannot
be asserted, i.e. the overestimation of interval analysis does not allow to
determine if the property is satisfied or violated.

The principle of the generic algorithm is quite simple and uses a branch-
and-bound principle: a box is a set of ranges for the design parameters, the
algorithm processes a list L of boxes indexed by the integer i. At the start,
the algorithm L has only one box, the search domain for i = 1. A box will
be valid only if the width of the range for design parameter sj is larger than
εj, j ∈ [1,m].

1. verify if the properties F are satisfied by the box i of L, using any
checking algorithm C

− if yes, store the box as an allowed region
− if no, i = i + 1 and return to 1

2. if one of the properties in F cannot be asserted, check the width of
each range in the box

− if all widths are lower than εj , then i = i + 1 and go to step 1
− otherwise select the design parameter that has the largest range

in the box, split the box into 2 boxes according to this parameter
and store them in L, then i = i + 1 and return to 1

The algorithm will stop when i is larger than the number of boxes in L, i.e.
all boxes have been processed.

Such an algorithm will in general satisfy property H1. Indeed the algo-
rithm provides an approximation to the allowed region as a set of boxes,
the boxes getting smaller near the boundary of the real allowed region. We
will usually set εj to be twice the tolerance on the design parameter j.
In the result we will get boxes with range [aj , bj ] for the design parame-
ter j, and we may choose as nominal value for this parameter any value in
[aj +εj, bj −εj] so that we can ensure that the real value for this parameters
is indeed included in [aj , bj ].

As for property H2, all will depend on the checking algorithm C. Some
of the algorithms presented in the previous chapters are able to verify that
a property satisfies a constraint without computing the exact value of this
property.

For property H3, we have not mentioned in the algorithm description
what was the domain for X. There are various possibilities:
− the domain for X is W: the checking algorithm is able to manage the

whole workspace, and the result we will get is the allowed region for
the current specification; the algorithm will be computer intensive

− the domain for X is a subdomain of W, which may be only a set of
poses or a collection of small domains around specific poses: the real
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allowed region for the specification is a subset of the region; it will be
necessary to verify that the design solutions satisfy the specification
over the whole workspace. The algorithm will be much more faster
than in the previous case

An interesting point however is that the verification algorithm that is neces-
sary in the second case may be directly deduced from the design algorithm.
Indeed, for the design algorithm, we start with large ranges for the design
parameters P and small ranges for X. On the other hand, for the verifi-
cation algorithm we have small ranges for P (the one resulting from the
design algorithm) and large ranges for X (to cover W). Hence the verifica-
tion algorithm is simply obtained from the design algorithm by exchanging
the role of P and X: the boxes will be set of ranges for X and the bisec-
tion process operates on the pose parameters. As for property H4, it is an
intrinsic feature of branch-and-bound algorithm.

There is also an additional advantage of the presented algorithm. The
calculation of the intersection of the allowed regions for various specifica-
tions may be done easily, using two possible approaches:

− the result of the algorithms is a set of boxes and computing the inter-
section of two such sets is easy. But before calculating this intersection
it may be necessary to regroup boxes into a larger boxes before cal-
culating the intersection. Indeed otherwise the intersection calculation
may lead to boxes whose widths will be smaller than εj and are there-
fore not robust with respect to tolerances

− alternatively we may use an incremental approach. Assume that it is
necessary to calculate the allowed regions for a set of n specification
{S1, . . . ,Sn}. A possibility for calculating the allowed region for speci-
fication Sk, k > 1 is to initialize the list L not with the search domain
but with the list of boxes obtained when calculating the allowed re-
gion for the specification Sk−1. Hence we start with the calculation of
the allowed region for S1 with the full search domain. Then the result
is used for the calculation for S2: the resulting boxes will be the de-
sign parameters values such that both S1,S2 are verified. Consequently
there is no need to compute the intersection.

We have implemented such algorithms for 6−UPS, 6−PUS robots with
the following set of design parameters:

− 6−UPS: R1, r1, α, β, the lowest leg length and the stroke (6 design
parameters)

− 6−PUS: R1, r1, α, β, the fixed length of the leg and the stroke (6 design
parameters)

We have started by designing such algorithms for the workspace specifica-
tion for 6−UPS robots (414) and 6−PUS robots (216).
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More recently we have developed a generic algorithm that may deal with
various requirements such as accuracy, velocity and statics. We assume that
we have to deal with the following problem G: being given an interval matrix
A and an interval vector b we want to show that the components xi of the
solution x of the linear interval system

Ax = b (11.1)

verifies |xi| ≤ εi, where εi is a given threshold, for any instance of the matrix
A in the interval set A and of the vector in b. To illustrate the interest of this
problem for our design problem, consider the relation ∆Θ = J−1

fk ∆X, which
characterizes the relation between the sensor errors and the positioning
errors of the platform. The vector b of our problem will be ∆Θ, which
is clearly a known interval vector. The matrix A will be J−1

fk which is an
interval matrix, if the design parameters are ranges. Hence if we are able
to solve problem G, we will be able to compute the allowed region for
an accuracy specification: find the design parameters so that, for bounded
sensor errors, the positioning accuracy of the robot is better than given
thresholds at specific poses of the workspace.

Dealing with the linear interval system (11.1) is a classical problem in
interval analysis, but our design problem has a special feature. The algo-
rithms developed for interval analysis assume that all elements of A are in-
dependent i.e. each element may have any value within its range. As shown
for the accuracy problem this is not the case in our design problem: as the
elements of J−1

fk are not independent. Hence we have designed a linear in-
terval system solving algorithm that takes into account the dependence be-
tween the elements of A, and therefore improves the bounds on the xi (216;
418). This algorithm allows one to compute the allowed region for all spec-
ifications that involve a linear system, such as accuracy, velocity and static
analysis.

Still, not all specifications may be managed by our algorithms. For ex-
ample, we are not yet able to design an algorithm that compute the allowed
region for a stiffness specification. But we will see in the next section that
this not a problem as long as we have a verification algorithm that allows
us to check if a design solution (or more exactly a family of design solutions
as tolerances will be taken into account) satisfies a specification.

11.6.4. SEARCH FOR APPROPRIATE ROBOTS

In the previous steps we have determined the intersection of the allowed re-
gions, possibly for all or some specifications, and hence we have determined
a domain D that includes all appropriate robots. Indeed the real domain
may be different because:
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− some allowed regions may have been computed with relaxed versions
of the constraints

− allowed region may have not been computed for some specifications

Anyhow, a designer cannot propose an infinite set of design solutions, and
therefore it is necessary to select a set of design solutions. For that purpose
the domain D will be sampled at regular intervals, each node of the sampling
representing an unique robot geometry.

The design solution obtained for a node will be checked with respect to
the specifications. Indeed the node may have been obtained for a relaxed
version of the constraints. Whenever possible this verification will be per-
formed by assigning a range for the design parameters, whose width will
be the corresponding tolerances; if a node is validated as design a solution
then the real robot obtained for the node, with the stated tolerances, will
also satisfy the specifications.

Secondary requirements are also calculated at each node. After verify-
ing all nodes, we retain a primary set of design solutions, satisfying the
specifications. Then, among this set we select as design solutions the one
providing the most different compromises for the secondary requirements.
For example, if the stiffnesses kx, ky are secondary requirements, we will se-
lect as design solutions the one with the largest kx, the one with the largest
ky and the one having a mean value for kx, ky. Finding the nodes with these
extremal compromises is yet an open problem, and the regular sampling of
the D may be not the best solution but there is no known algorithm with
a better strategy.

11.6.5. DESIGN EXAMPLES

We have used the parameter space approach for numerous design studies:

− fine positioning devices: we have studied positioning devices for the
European Synchrotron Radiation Facility (ESRF) based in Grenoble,
having a load between 250 and 2500 kg, and an absolute accuracy
better than 1µm in a relatively small workspace; 40 of such devices are
currently in use� ESRF . Another device is currently under construction
at the Institut Laue Langevin (ILL) for the SALSA project� ILL

− machine-tool: the CMW-300 milling machine has been designed using
this approach� CMW

− space telescope: a space active deployable telescope
− measurement device: a wire robot for measuring the displacement of

automotive components
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11.6.6. ADVANTAGES AND DRAWBACK

The clear advantages of the parameter space approach is to provide robust
solutions (a robot constructed with stated tolerances from the theoretical
solution will satisfy the specifications) that satisfy the imperative and pri-
mary requirements. Furthermore, the approach provides an infinite set of
design solutions: this gives flexibility to manage constraints that were not
known at the start of the design process.

There are drawbacks: up to now to we can manage relatively few de-
sign parameters (but this is not really a problem for parallel robots); the
calculation of the allowed regions is difficult and computer intensive. The
approach has also difficulties in managing optimal requirements, but we
believe that is not in general a problem for parallel robots: optimal so-
lution for one design requirement will usually lead to other unacceptable
performances. Another difficulty is to manage a failure in the design which
is obtained when the intersection of the allowed regions is empty. The size
of each allowed region may indicate which requirement is too strict, but we
still do not know which requirement(s) must be relaxed, and by how much.

11.7. Other design issues

In the previous sections we have focused on design parameters that are
related to the geometry of the robots. But there may be other types of
design parameters:

− dynamics: surprisingly, although fast parallel robots have been devel-
oped, few works have addressed the design issue for the dynamics,
apart from the work of Khatib (310) and Di Gregorio (136), both for
3 d.o.f. robots. Nagai (437) uses an optimization procedure to max-
imize the accelerations of a wire robot under velocity and accuracy
constraints

− thermal: thermal effects may play a role in the positioning accuracy of
fine positioning robots. If this problem is an issue, a possible correc-
tion method is based on the use of temperature sensors. Sellgren (530)
addresses this issue for a Tricept robot with the following design prob-
lems:

• find the location of the sensors that are suitable for controlling
positioning errors caused by thermal effects. Sellgren shows that
the temperature sensor should be mounted along the screw of the
linear actuator, which is not easy

• is it possible to compensate for leg length variations by combining
the measurements of temperature sensor with the other sensors
data: no final answer has been given to this question
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− reliability: fault tolerant parallel manipulators have been addressed by
Notash (451), in view of determining a layout of the joints and sensors
that is the least sensitive to failure.

− control: in the design for control approach, the purpose is to determine
the design of a system to simplify its control. This is an approach that
may be used for parallel robots (458). For example, it may be thought
that an appropriate design may help to simplify the dynamic modeling

11.8. Exercises

Exercise 11.1: Show under what assumption the diagonal elements of
the stiffness matrix of a 6−UPS robot depend only of the ratio r1/R1

Exercise 11.2: Show how to calculate the union of the ellipses Es(λ) (see
page 310) when λ lies in the interval [0,1]. Indication: consider the location
of the points M defined by MO = R1u + r1v.
Exercise 11.3: Show that the centers of the ellipses E(λ) (see page 310)
lie on a line as λ varies, and that the angle between their principal axes and
the x axis is always π/4 (assuming that the vectors u,v are not identical).
Exercise 11.4: Show that the algorithm for the determination of the
allowed region based on the workspace constraints described at page 310
may be extended to 3-RPR, 3-RRR planar robots
Problem 11.1: Design a general parallel robot simulator that takes as
input, for example, a DH description of the legs, and automatically per-
forms kinematic, velocity and static analyses (inverse and direct kinematics,
velocities and statics)
Problem 11.2: Find the principal direction of the U,S joints of a 6−UPS
robot so that the extremal joint motions over a given workspace are minimal
Problem 11.3: For the parameter space approach, determine a sampling
algorithm for the intersection of the allowed regions that will determine the
robots presenting the most various values for the secondary requirements
Problem 11.4: Determine, for a given robot, which performance require-
ments may be independently optimized
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Appendix: system solution

We give a brief, intuitive summary of classical system solution methods,
most of which can be used only for algebraic systems, i.e. for polynomial
equations. Fortunately, in robotics, many of the problems (but not all of
them) may be formulated in terms of polynomial equations, sometimes at
the expense of a higher complexity. The purpose of these methods is to
determine all solutions of the system.

12.1. Homotopy

This method, also called continuation, is based on the following steps: sup-
pose S is the given system of algebraic equations which are to be solved;
we take a new system S1, ”similar” in size to S, with known solutions.
The coefficients of S1 are slightly modified by successive steps, so that they
tend towards those of S. At each step, the solutions for the modified system
are obtained from the previous solutions by an iterative numerical method,
usually a Newton-Raphson scheme. Different solution branches are there-
fore followed, some of which will lead to infinite solutions and are discarded.
One remarkable characteristic of algebraic systems is that the number of
branches leading to infinite solutions is in general constant if the coefficients
are sufficiently general.

For the direct kinematics, it is therefore sufficient to take randomly
selected geometries in order to determine the total number of complex and
real solutions. Raghavan (492) thus randomly chooses 11 geometries of a
6−UPS robot to show that the direct kinematics problem admits up to 40
complex solutions.

The main drawback of homotopy is that to get all solutions of the sys-
tem, S1 should have at least the same number of possible complex solutions
as the final system, which is usually very large. Consequently, the number
of followed branches will be large (960 in the algorithm of Raghavan); this
will have a strong influence on the computation time. Mu (432) reduces
this number by computing the 40 real and complex solutions of a special
6−UPS robot whose solution may be easily found, and then incrementally
modify the geometry of this robot toward the current geometry. Only 40
branches have to be followed, the computation time is still large. A nice
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overview of continuation methods may be found in (546).

12.2. Elimination

Consider an algebraic system of n equations with n unknowns x1, . . . , xn;
each equation of the system is the sum of monomials (e.g. x3

2x3, x4x2, 1).
The first step of elimination is to hide an unknown (e.g. x1) and to consider
that the system has only the unknowns x2, . . . , xn. Each monomial of the
system is considered as a new unknown yi, so that the system of n equations
has now as unknowns the m > n monomials yi. Multiplying the initial set
of equations by a monomial M leads to a system of 2n equations in m1

unknown monomials. The multiplication by M of the monomials in the
initial set of equations may introduce new monomials (and hence m1 > m),
but some of these products may already be present in the initial set (and
hence m1 < 2m). The multiplication by a monomial is repeated for the 2n
equations, and for the resulting systems, until we get a square system of K
equations in K unknown monomials yi. This system may be written as a
linear system:

A(x1)y = 0,

where y is a vector constituted of all monomials including the constant
monomial 1 (hence y cannot be the zero vector). This system admits a
solution if and only if |A(x1)| = 0, this equation being an univariate poly-
nomial in x1. After solving this polynomial it is possible to backtrack i.e.
to determine all the xi unknowns for each root in x1.

The drawbacks of the elimination approach are:
− for systems of 2 equations in 2 unknowns, the matrix A is obtained as

the Sylvester matrix, and its determinant is the resultant of the system.
For more equations there are various ways to produce the matrix A,
that will lead to different polynomials with different degrees.

− the univariate polynomial may lead to spurious roots, i.e. values of x1

that do not lead to a solution of the system
− it is usually difficult to calculate the determinant of the matrix A in

analytical form (a rule of thumb is that the analytical form cannot be
obtained as soon as the size of A is larger than 5). Even if getting the
analytical form is possible, round-off errors may affect the coefficients
of the polynomial. Instead of using floating points it is better to con-
vert any numerical value in A to rational. But the rationals that will
be present in the determinant may have very large integers as numer-
ator and denominator and this will require using a software allowing
multiple precision

− to avoid this drawback it has been proposed to compute numerically
the determinant for random values of x1. For each of these values, the
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determinant is a linear function of the coefficients of the polynomial.
Hence for a polynomial of degree m it is sufficient to compute the de-
terminant at m + 1 random values for x1 to get a system of m + 1
linear equations in the m + 1 coefficients of the polynomial, which can
be solved numerically to get the coefficients. Unfortunately it can be
shown that the linear system is extremely ill-conditioned and conse-
quently that this approach is very sensitive to round-off errors, and is
thus far from being robust numerically. Wampler (603) proposes an-
other approach that amounts solving a generalized eigenvalue problem,
for which robust algorithms exist.

A nice overview of resultant, discriminant and elimination methods may be
found in (178).

12.3. Gröbner basis

The Gröbner basis gives us a method for writing a system of algebraic
equations f(x1, . . . , xn) = 0 in the unknowns x1, . . . , xn with finitely many
solutions into a system that has the same roots and which is in trian-
gular form gn(xn) = 0, gn−1(xn−1, xn) = 0, . . . , g1(x1, . . . , xn) = 0, called
a Gröbner basis. The principle may be understood on a simple example.
Consider 2 intersecting circles whose centers lie on the x axis. The intersec-
tion of these circles can be computed by solving a system of 2 second order
equations in the coordinates of the intersection points. But there are many
other algebraic varieties that have the same intersection points as the two
circles, among which there is a vertical line x − b = 0, this later equation
being the gn(xn) = 0 of the Gröbner basis. Calculation of a Gröbner basis
is not easy (see a nice introduction to this theory in (112)) but Faugère
has supplied the very efficient package FGB for that purpose, and Rouil-
lier uses it for providing the fastest known algorithm for solving the direct
kinematics of 6−UPS robots (514).

The first drawback of the Gröbner basis is that the calculation time of
the Gröbner basis is heavily dependent upon the size of the system (i.e.
the number of equations and their degree). Its second drawback is that
its calculation with real numbers is numerically unstable: to avoid this
problem, the initial floating point coefficients of the initial system should
be converted to rationals so that the Gröbner calculations are done over
the integers. But the coefficients of the Gröbner basis may then become
huge and the solution will require appropriate software to be manageable.
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Appendix: interval analysis

Interval analysis is a mathematical tool that is appropriate for solving many
problems related to robotics. Many of the results presented in this book
have been obtained through this method, convenient for optimization, un-
certainties in the modeling, system solving, . . .. We present a short intro-
duction to this tool, outlining general algorithm principles: more details
may be found in (214; 281; 430; 445) and in the ALIAS home page

www.inria-sop.fr/coprin/logiciel/ALIAS/ALIAS.html.

13.1. Introduction

The interval X = [x, x] is defined as the set of real numbers y such that
x ≤ y ≤ x. The width of an interval is defined as x − x, and the mid-point
of the interval is (x + x)/2.

An interval vector X is a set of intervals; it is also called a box. The mid-
point of a box is the vector whose components are those of the mid-point
of its interval. Let f(x = {x1, x2, . . . , xn}) be a function in n unknowns,
and a box B = {X1, . . . ,Xn} with n intervals, one for each unknown: an
interval evaluation F (B) of f for the box is an interval [F ,F ] such that
F ≤ f(x1, . . . , xn) ≤ F for any value of the xi such that xi ∈ Xi. In other
words, F,F are lower and upper bounds for the value of f(x) for any values
of x in the box.

There are many ways to implement an interval evaluation of a function
but the simplest one is the natural evaluation, in which each mathematical
operator is substituted by an interval equivalent. For example let f be
f(x) = x2 − 2x + 1 with x in [4,5]. We have

f([4, 5]) = [4, 5]2 − 2[4, 5] + 1 = [16, 25] − [8, 10] + [1, 1] = [7, 18]

Note that the bounds are not exact: the upper (lower) bound may be larger
(lower) than the real maximum (minimum) of the function. But this over-
estimation will decrease with the width of the parameter interval, and there
are cases and methods that allow one to get exact bounds.

Interval analysis may be used for almost all classical mathematical func-
tions, and are not restricted to specific structures such as algebraic func-
tions.
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An important point is that such interval evaluation can be implemented
on a computer in a guaranteed manner i.e. in a way that takes into account
numerical round-off errors (for example we are currently using the C++
BIAS/Profil package1 that is quite effective). It must be known that nu-
merical errors occur much more frequently that may be thought. Consider
for example the following function, proposed by Rump:

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 +
x

2y

that has to be evaluated at x = 77617, y = 33096. Various tools may
be used to perform this calculation: table 13.1 gives the result. We no-

Matlab Scilab C (double) Maple (10 Digits) Maple (20 digits)

−1.1806×1021 −1.1806×1021 1.1726039 0.1×1028 −1×1017

TABLE 13.1. Evaluated value of f at x = 77617, y = 33096

tice immediately a large discrepancy in both the sign and value of the
evaluation. If we use an interval evaluation we get as interval evaluation
[−0.5661023 , 0.5551023 ] while the exact value is about -0.8273960599 . . .

13.2. Function properties and interval evaluation

The following property of f can be deduced from its interval evaluations
[F,F ] for a box B:

1. if 0 �∈ [F ,F ]: there are no values of the unknowns in B that may make
f = 0

2. if F < 0 (F > 0), then for any values of the unknowns in B we have
f < 0 (f > 0)

3. let A be a known constant; if F < A (F > A), then for any values of
the unknowns in B we have f < A (f > A)

13.3. Generic interval-based algorithm

Most of the algorithms that are based on interval analysis have a generic
structure that we will now describe. We assume that we are dealing with a
set of n unknowns {x1, . . . , xn} and that we are solving a problem for which
the unknowns are constrained to lie within a box B1. During the algorithm

1http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
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we will process in sequence the m boxes of a list L and the index i will be
used to indicate the number of the box that is currently processed.

A fundamental step in the algorithm is the bisection step. At this stage
we are dealing with a box Bd = {[xd

1, x
d
1], . . . , [x

d
n, xn

d]}. Using various
heuristics we will choose one of the unknowns xj and create two new ranges
I1, I2 for this variable as I1 = [xd

j , (x
d
j + xd

j )/2], I2 = [(xd
j + xd

j )/2, x
d
j ]. We

extract from Bd two new boxes BI1
d ,BI2

d that have the same ranges for the
unknowns, except for the variable xj , which will have as range either I1 or
I2. These boxes will be stored in L, and the number of boxes in this list
will be updated.

A key point in the algorithm is the operator S that takes as input a box
and returns -1 if there is no solution of the problem in the box, 1 if the box
is a solution, and 0 otherwise.

An optional element is the filter operator F that takes as input a box
and returns -1 if there is no solution in the box. It may alternatively return
a box whose width is lower than the input box, after having determined
that the removed part of the input box cannot contain a solution.

With these elements, a typical interval analysis based algorithm pro-
ceeds the following steps:

1. i = 1, L = {B1}, m = 1
2. if i > m then EXIT
3. if F(Bi) = −1 then i = i + 1, go to 2, else Bi = F(Bi)
4. compute k = S(Bi)

(a) if k = −1 then i = i + 1, go to 2
(b) if k = 1 then Bi is a solution, i = i + 1, go to 2

5. bisect Bi, L = L ∪ {BI1
i ,BI2

i }, m = m + 2, i = i + 1, go to 2

Such an algorithm will always terminate, as the size of the box always
decreases after a bisection. Provided that the boxes resulting from the bi-
section are put at the top of the list, there is usually no problem of memory
storage. The worst case complexity is exponential, but quite often the ex-
perimental complexity is more tractable.

It must be noted that such an algorithm is appropriate for a distributed
implementation (and this will be valid for most of the interval analysis
based algorithms). Indeed the processing of a given box in the list does
not, in general, depends on the other boxes of the list. Hence a master
computer may manage the list, and send a box to a slave computer that
will execute the algorithm with its own boxes list, but will perform only
a few bisections. Then the slave will return the remaining boxes in its list
to the master and will be ready to process another box. Such a scheme
may be easily implemented with classical workstations, by using a message
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passing mechanism such as PVM2. The computation time decrease will be
in general somewhat smaller than the number of slaves, due to the overhead
of the data transmission between the master and the slaves. But in some
cases the gain may be larger than the number of slaves: for example for
global optimization (see next section) or when only one solution has to be
found.

Note that we have assumed that the initial domain was a box B1: this is
not restrictive, and other bounded domain shapes may be treated as long
it is possible to determine a bounding box of the domain, and there is a
procedure to test whether a given box lies inside or outside the domain. This
test will be used before step 3 of the generic algorithm. If the test indicates
that the current box is outside the domain, then the box is discarded and
the next box is processed. If the test is not able to determine if the box is
fully inside or outside the domain then two strategies are possible:

− bisect the box
− proceed with the box. If S(Bi) is equal to -1 the box will be eliminated

but if it is equal to 1 the box will be bisected

13.4. General purpose applications

The generic algorithms allow us to solve several robotics problems.

13.4.1. SYSTEM SOLVING

Let f(x = {x1, x2, . . . , xn}) = 0 be a system of m ≥ n equations in n
unknowns, and assume that we are looking for the solutions of this system
in a given box Bd. The operator S is based on the interval evaluation F(Bd)
of the equations: if the interval evaluation of one equation does not include
0 the operator will return -1. In its simplest implementation the operator
will return 1 (i.e. the current box is considered a solution of the system)
if the width of the box is lower than a given, small, threshold, but more
sophisticated implementation obtains all certified solutions.

Note that this algorithm may also be used when the system includes
inequalities.

13.4.2. GLOBAL OPTIMIZATION

To solve a global optimization problem (may be constrained) i.e. to find
the maximum of a given function f up to an arbitrary accuracy ε we will
maintain an estimated value of the maximum fM whose value is initialized
by computing f for an arbitrary value of the unknowns.

2http://www.netlib.org/pvm3/index.html
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The operator S computes the interval evaluation of f for the current box
and returns -1 if f ≤ fM + ε and 0 otherwise. This operator also computes
f for the mid-point of the box and eventually updates fM .

13.4.3. LINEAR SYSTEM SOLVING

An interval linear system is defined as:

AX = b

where A is a square interval matrix (i.e. a matrix whose elements are in-
tervals) and b is an interval vector. Two problems arise for interval linear
systems:

1. outer approximation: determine a box that includes all the solutions
in x obtained for all real instances of A,b (i.e. when the elements of
A,b have a fixed value that belong to the ranges)

2. inner approximation: determine a box for x such that for all elements
xr of the box there is a matrix A in A and a vector br in b such that
Axr = br

These problems are classical in interval analysis, especially the outer ap-
proximation, and may be solved using interval adaptation of classical meth-
ods in linear algebra (e.g. Gaussian elimination). These methods however
usually provides an over estimate of the outer approximation.

13.5. Robotics applications

13.5.1. WORKSPACE CALCULATION

The workspace W of a parallel robot is usually defined as the set of poses
X such that a set of inequalities F (X) ≤ 0 is satisfied. It is also usually
possible to determine a bounding box Bd that includes W. The generic
algorithm may be adapted to compute an approximation to W as a set
of boxes for the components of X (see (411) for more details). Here the
operator S computes the interval evaluations of all the inequalities in F
and returns -1 if the lower bound of one of these interval evaluations is
positive, and 1 if the upper bound of all the evaluations is negative. In the
later case, the whole box is included in the workspace. The operator will
also return -1 if the box width is lower than a given threshold ε (in that
case the box is called a neglected box)

The approximation to W is constituted by the boxes in the file with a
total volume of Va. When neglecting a box, we may update the total volume
Vn of the neglected boxes, and the volume of W is less than or equal to
Va + Vn. Hence the ratio Vn/Va is a good index for measuring the quality
of the approximation.
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Note that the quality of the approximation may be improved by an
incremental process. We start with a relatively large value for ε and as
soon as a box is neglected it is written in a file. After completing the run,
we decrease the value of ε, and start again using the neglected boxes as
initial elements in the boxes list.

13.5.2. SINGULARITY DETECTION

In the same way, we may deal with the problem of finding if at least one
singularity exists within a given connected workspace W as long as we
are able either to calculate an analytical form for the determinant of the
inverse Jacobian matrix, or to evaluate it for given intervals for the pose
parameters. We need also a test T (Bi) to determine if the box Bi is fully
inside, fully outside or partly inside W.

We start by calculating the numerical value of the determinant D(Xi)
of the inverse Jacobian matrix at an arbitrary pose Xi chosen in W, and
look at its sign. Without loss of generality we may assume that D(Xi) is
strictly positive. If we are able to determine another pose Xk in W such
that D(Xk) is strictly negative, then any path connecting Xi and Xk must
include a singular pose Xs for which D(Xs) is 0, and hence W includes a
singularity.

To determine if a singularity exists in W we calculate a bounding box
B0 of W and use the generic algorithm with the operator S that returns -1 if
the box is outside W or if the lower bound of the interval evaluation of D for
the box is positive. If the upper bound of this interval evaluation is negative,
then we have determined that a singularity exists in W. Refinement of this
algorithm may be found in (413).

13.6. Conclusion

We have outlined general principles for interval-analysis based algorithms
that have been proved to be effective for robotics problems. But interval
analysis should not be considered as a ”black box”, because it relies on a
large combination of heuristics and numerical methods to be effective. Fur-
thermore, the way the problem is formulated has to take into account that
interval analysis will be used for the solution. For example, we may have
many ways to formulate the problem that will result in systems that differ
in their number of unknowns, and by the complexity of the equations. A
classical practice is to try to obtain the system having the lowest possible
number of unknowns but with interval analysis that may be not the best
choice if the complexity of the final equations is such that their overestima-
tion will always be large. The difficulty is then to find the right compromise
between the number of unknowns and the complexity of the equations.
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Conclusion

The characteristics of parallel robots are very different from those of serial
manipulators, and involve problems which, although they may be similar
to those encountered for serial structure, need a specific treatment. We saw
that parallel robots are particularly appropriate for numerous applications.
We believe that employing such mechanisms will become more and more
common for many tasks:

− accurate manipulations, possibly implying heavy loads ;
− tasks implying significant velocities ;
− applications involving contacts between the robot and its environment;
− entertainment and machine-tools;
− micro-machines;

and this list is not exhaustive. Some of these markets are small, but involve
high technology, and need a very careful design. Markets such as entertain-
ment may be huge but require relatively low technology if the initial design
is good. Machine-tool applications are promising, but not surprisingly, after
only a few years of research we cannot expect them to have reached the
same level of reliability as serial structures, which have been studied for
many years.

It is not the cost of parallel robots that hinders their development; they
are most often constituted of standard components. It is the complexity of
their implantation, of their control and of their design that is a potential
problem. Control is a key issue, especially for machine-tools, for which most
controllers are basically the same as those used for classical linear machines,
and therefore not appropriate for a non-linear machine. Our extensive sim-
ulations have shown that, for a well-designed parallel robot, 70% of the
positioning errors may be attributed to the controller, and only 10% to the
machine, the remaining errors coming from the CAD system. Hence a large
effort should be devoted to developing a dedicated parallel robot controller
that will make full use of the potentialities of the robot. Dynamic model-
ing should probably be included in the controller, whenever appropriate,
although it is still difficult to figure out its benefit. The controller must
also be able to deal with on-line calibration of the robot, and the robot
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itself should be designed from the beginning with calibration in mind (e.g.
it should include sensors in its passive joint).

CAD and simulation software must also be addressed, especially for the
development of parallel robots having less than 6 d.o.f. Synthesizing ma-
chines with less than 6 d.o.f. is an exciting field of research, but we lack
the simulation tools to perform a critical analysis of these new mechanisms,
and to determine how useful they may be. Within the CAD system, a mod-
ule for trajectory planning should be developed. But trajectory planning
for closed-chains has not reached the same level as for serial chains; other
related problems should be addressed, such as optimal part positioning or
optimal use of eventually redundant d.o.f.

Much progress have been made in recently years on theoretical issues
such as kinematics, singularity analysis and workspace calculation. There
still remain many open problems, many of them having being listed in
the previous chapters. Among the most important, we should mention the
performance analysis issue (define appropriate performance characteristics
of the robot and a means of calculating them exactly and robustly), and
the optimal or appropriate design problem, for which we are lacking both
theoretical background and software.

The study of parallel robots has become increasingly important dur-
ing recent years, as shown both by the ever-increasing number of papers
published on the subject, and by the various applications for which these
mechanisms have been used. Some research has extended our knowledge
about particular aspects of this type of mechanism, but numerous topics
still remain open. The concept of a parallel robot has proved to be not
entirely academic ; on the contrary, it is a system appropriate for the in-
dustrial world. We hope that this book will help in the understanding of the
complex phenomena that are encountered in the design and use of parallel
robots.
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châınes cinématiques simples et complexes. In 7th World Congress on
Theory of Machines and Mechanisms, pages 199–202, Seville, Septem-
ber, 17-22, 1987.

[11] Angeles J. The robust design of parallel manipulators. In 1st Int.
Colloquium, Collaborative Research Centre 562, pages 9–30, Braun-
schweig, May, 29-30, 2002.

[12] Angeles J. The qualitative synthesis of parallel manipulators. ASME
J. of Mechanical Design, 126(4):617–624, July 2004.

333



REFERENCES

[13] Angeles J. Is there a characteristic length of a rigid-body displace-
ment? In Computational Kinematics, Cassino, May, 4-6, 2005.

[14] Arai T., Cleary K., and others . Design, analysis and construction of a
prototype parallel link manipulator. In IEEE Int. Conf. on Intelligent
Robots and Systems (IROS), volume 1, pages 205–212, Ibaraki, Japan,
July, 3-6, 1990.

[15] Arai T., Larsonneur R., and Jaya Y.M. Calibration and basic motion
of a micro-hand module. In Int. Conf. on Indus. Electronics, Control
and Instrumentation (IECON), pages 1660–1665, Hawai, November,
15-19, 1993.

[16] Arsenault M. and Boudreau R. The synthesis of three-degree-of-
freedom planar parallel mechanisms with revolute joints (3-RRR)
for an optimal singularity-free workspace. J. of Robotic Systems,
21(5):259–274, 2004.

[17] Artigue F., Amirat M.Y., and Pontnau J. Isoelastic behavior of par-
allel robots. Robotica, 7:323–325, 1989.

[18] Arun V. and others . Determination of the workspace of the 3-dof
double-octahedral variable-geometry-truss manipulator. In 22nd Bi-
ennial Mechanisms Conf., pages 493–500, Scottsdale, September, 13-
16, 1992.

[19] Asada H. and Granito C. Kinematic and static characterization of
wrist joints and their optimal design. In IEEE Int. Conf. on Robotics
and Automation, pages 244–250, St Louis, March, 25-28, 1985.

[20] Austad A. Arm device, June, 4, 1987. IPN n◦ WO 87,03239.
[21] Badescu M. and Mavroidis C. Workspace optimization of 3-legged

UPU and UPS parallel platforms with joint constraints. ASME J. of
Mechanical Design, 126(2):291–300, March 2004.

[22] Bai S. and Teo M.Y. Kinematic calibration and pose measurement
of a medical parallel manipulator by optical position sensors. J. of
Robotic Systems, 20(4):201–209, 2003.

[23] Baker J.E. An analysis of the Bricard linkages. Mechanism and
Machine Theory, 15(4):267–286, 1980.

[24] Bamberger H. and Shoham M. A new configuration of a six degrees-
of-freedom parallel robot for mems fabrication. In IEEE Int. Conf.
on Robotics and Automation, pages 4545–4550, New Orleans, April,
28-30, 2004.

[25] Bande P. and others . Kinematics analyses of Dodekapod. Mechanism
and Machine Theory, 40(6):740–756, June 2005.

[26] Baron L. and Angeles J. The direct kinematics of parallel manipu-
lators under joint-sensor redundancy. IEEE Trans. on Robotics and
Automation, 16(1):12–19, February 2000.

[27] Baron L., Wang X., and Cloutier G. The isotropic conditions of

334



REFERENCES

parallel manipulators of Delta topology. In ARK, pages 357–366,
Caldes de Malavalla, June 29- July 2, 2002.

[28] Baumann R., Maeder W., Glauser D., and Clavel R. The Pantoscope:
a spherical remote-center-of-motion parallel manipulators for force
reflection. In IEEE Int. Conf. on Robotics and Automation, pages
718–723, Albuquerque, April, 21-28, 1997.

[29] Behi F. Kinematic analysis for a six-degree-of-freedom 3-PRPS par-
allel mechanism. IEEE J. of Robotics and Automation, 4(5):561–565,
October 1988.

[30] Behi F., Mehregany M., and Gabriel K.J. A microfabricated three-
degree-of-freedom parallel mechanism. In IEEE Micro Electro Me-
chanical Workshop, pages 159–165, Napa Valley, February, 11-14,
1990.

[31] Ben-Horin R. and Shoham M. Construction of a new type of a
six-degrees-of-freedom parallel manipulator with three planarly ac-
tuated links. In ASME Design Engineering Technical Conference
and Computers in Engineering Conference, pages 96–DETC/MECH–
1561, Irvine, August, 18-22, 1996.

[32] Ben-Horin R., Shoham M., and Djerassi S. Kinematics, dynamics
and construction of a planarly actuated parallel robot. Robotics and
Computer-Integrated Manufacturing, 14(2):163–172, April 1998.

[33] Ben-Horin R. and Shoham M. Singularity analysis of a class of par-
allel robots based on Grassmann-Cayley alebra. In Computational
Kinematics, Cassino, May, 4-6, 2005.

[34] Ben Sghaier A. and Romdhane L. A software package for parallel
mechanisms modeling and simulation. In Computational Kinematics,
Cassino, May, 4-6, 2005.

[35] Berger K.T., Horta L.G., and Taleghani B.K. Static testing of an
inflatable/rigidizable hexapod structure. In 45th AIAA Structures,
Structural Dynamics and Material Conf., Palm-Spring, April, 19-22,
2004.

[36] Bernier D., Castelain J-M., and Li X. A new parallel structure with
six degree of freedom. In 9th World Congress on the Theory of Ma-
chines and Mechanisms, pages 8–12, Milan, August 30- September
2, 1995.

[37] Besnard S. and Khalil W. Calibration of parallel robot using two
inclinometers. In IEEE Int. Conf. on Robotics and Automation, pages
1758–1763, Detroit, May, 10-15, 1999.

[38] Bhattacharya S., Hatwal H., and Ghosh A. On the optimum design of
a Stewart platform type parallel manipulators. Robotica, 13(2):133–
140, March - April , 1995.

[39] Bhattacharya S., Hatwal H., and Ghosh A. An on-line estimation

335



REFERENCES

scheme for generalized Stewart platform type parallel manipulators.
Mechanism and Machine Theory, 32(1):79–89, January 1997.

[40] Bhattacharya S., Nenchev D.N., and Uchiyama M. A recursive for-
mula for the inverse of the inertia matrix of a parallel manipulator.
Mechanism and Machine Theory, 33(7):957–964, October 1998.

[41] Bhattacharya S., Hatwal H., and Ghosh A. Comparison of an exact
and an approximate method of singularity avoidance in platform type
parallel manipulators. Mechanism and Machine Theory, 33(7):965–
974, October 1998.

[42] Bleicher F. Optimizing the three-axis machine-tool with parallel kine-
matic structure. In 3rd Chemnitzer Parallelkinematik Seminar, pages
883–894, Chemnitz, April, 23-25, 2002.

[43] Bombin C., Ros L., and Thomas F. On the computation of the direct
kinematics of parallel spherical mechanism using Bernstein polyno-
mials. In IEEE Int. Conf. on Robotics and Automation, pages 3332–
3337, Seoul, May, 21-26, 2001.

[44] Bonev J., I.A.and Ryu. A new method for solving the direct kinemat-
ics of general 6-6 Stewart platforms using three linear extra sensors.
Mechanism and Machine Theory, 35(3):423–436, March 2000.

[45] Bonev I.A. and Ryu J. A geometrical method for computing the
constant-orientation workspace of 6-P rss parallel manipulators. Mech-
anism and Machine Theory, 36(1):1–13, 2001.

[46] Bonev I.A. and Ryu J. A new approach to orientation workspace
analysis of 6 dof parallel manipulator. Mechanism and Machine The-
ory, 36(1):15–28, January 2001.

[47] Bonev I.A. Delta parallel robot-the story of success. May, 6, 2001,
http://www.parallemic.org/Reviews/Review002.html.

[48] Bonev I.A. and Zlatanov D. The mystery of the singular SNU trans-
lational parallel robot. June, 12, 2001,
www.parallemic.org/Reviews/Review004.html.

[49] Bonev I.A. and others . A closed-form solution to the direct kine-
matics of nearly general parallel manipulators with optimally located
three linear extra sensors. IEEE Trans. on Robotics and Automation,
17(2):148–156, April 2001.

[50] Bonev I.A. The true origins of parallel robots. January, 24, 2003,
http://www.parallemic.org/Reviews/Review007.html.

[51] Bonev I.A., Zlatanov D., and Gosselin C. Singularity analysis of 3 dof
planar mechanisms via screw theory. ASME J. of Mechanical Design,
125(3):573–581, September 2003.
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[183] Ghorbel F., Chetélat O., and Longchamp R. A reduced model for
constrained rigid bodies with application to parallel robots. In 4th
IFAC Symp. on Robot Control, Syroco, pages 57–62, Capri, Septem-
ber, 19-21, 1994.

[184] Girone M. and others . A Stewart platform-based system for ankle
telerehabilitation. Autonomous Robots, 10(2):203–212, March 2001.

[185] Gogu G. Mobility criterion and overconstraints of parallel manipula-
tors. In Computational Kinematics, Cassino, May, 4-6, 2005.

[186] Gosselin C. Kinematic analysis optimization and programming of par-
allel robotic manipulators. Ph.D. Thesis, McGill University, Montréal,
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Conf., pages 53–60, Montréal, September, 17-20, 1989.

[293] Joshi S.A. and Tsai L-W. Jacobian analysis of limited-dof parallel
manipulators. ASME J. of Mechanical Design, 124(2):254–258, June
2002.

[294] Joshi S.A. and Tsai L-W. A comparison study of two 3-DOF paral-
lel manipulators: one with three and the other with four supporting
legs. IEEE Trans. on Robotics and Automation, 19(2):200–209, April
2003.

[295] Jui C.K.K. and Sun Q. Path trackability and verification for parallel
manipulators. In IEEE Int. Conf. on Robotics and Automation, pages
4336–4341, Taipei, September, 14-19, 2003.

[296] Kang B. and Mills J.K. Dynamic modeling of structurally flexible
planar parallel manipulator. Robotica, 20(3):329–339, May 2002.

[297] Kang B., Yeung B., and Mills J.K. Two-time scale controller design
for a high speed planar parallel manipulator with structural flexibility.
Robotica, 20(5):519–528, September 2002.

[298] Kang B.H. and others . Analysis and design of parallel mechanisms
with flexure joints. In IEEE Int. Conf. on Robotics and Automation,
pages 4097–4102, New Orleans, April, 28-30, 2004.

[299] Kang H.J. and Freeman R.A. An interactive software package (MAP)
for the dynamic modeling and simulation of parallel robotic systems
including redundancy. In ASME Int. Computer in Engineering Conf.,
pages 117–123, Boston, September, 5-9, 1990.

[300] Karger A. Architecture singular planar parallel manipulators. Mech-
anism and Machine Theory, 38(11):1149–1164, November 2003.

[301] Karouia M. and Hervè J.M. A three-dof tripod for generating spher-
ical motion. In ARK, pages 395–402, Piran, June, 25-29, 2000.
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142, Ferrare, September, 7-9, 1992.

[346] Lazard D. On the representation of rigid-body motions and its ap-
plication to generalized platform manipulators. In J. Angeles P. Ko-
vacs, G. Hommel, editor, Computational Kinematics, pages 175–182.
Kluwer, 1993.

[347] Lazard D. and Merlet J-P. The (true) Stewart platform has 12 con-
figurations. In IEEE Int. Conf. on Robotics and Automation, pages
2160–2165, San Diego, May, 8-13, 1994.

[348] Lebesgue H. Octaèdre articulé de Bricard. L’enseignement mathéma-
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[378] Lösch S. Parallel redundant manipulator based on open and closed
normal Assur chains. In J-P. Merlet B. Ravani, editor, Computational
Kinematics, pages 251–260. Kluwer, 1995.

[379] Lou Y. and others . Optimal design of a parallel machine based on
multiple criteria. In IEEE Int. Conf. on Robotics and Automation,
pages 3230–3235, Barcelona, April, 19-22, 2005.

[380] Ma O. and Angeles J. Optimum architecture design of platform ma-
nipulator. In ICAR, pages 1131–1135, Pise, June, 19-22, 1991.

[381] McCallion H. and Pham D.T. The analysis of a six degrees of freedom
work station for mechanized assembly. In Proc. 5th World Congress
on Theory of Machines and Mechanisms, pages 611–616, Montréal,
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teur parallèle à 6 degrés de liberté. Mechanism and Machine Theory,
26(1):77–90, 1991.

[399] Merlet J-P. Direct kinematics and assembly modes of parallel manip-
ulators. Int. J. of Robotics Research, 11(2):150–162, April 1992.

[400] Merlet J-P. Closed-form resolution of the direct kinematics of par-
allel manipulators using extra sensors data. In IEEE Int. Conf. on

361



REFERENCES

Robotics and Automation, pages 200–204, Atlanta, May, 2-7, 1993.
[401] Merlet J-P. Trajectory verification in the workspace for parallel ma-

nipulators. Int. J. of Robotics Research, 13(4):326–333, August 1994.
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pour une orientation constante. Mechanism and Machine Theory,
29(8):1099–1113, November 1994.

[403] Merlet J-P. Determination of the orientation workspace of parallel
manipulators. Journal of Intelligent and Robotic Systems, 13(1):143–
160, 1995.

[404] Merlet J-P. Direct kinematics of planar parallel manipulators. In
IEEE Int. Conf. on Robotics and Automation, pages 3744–3749, Min-
neapolis, April, 24-26, 1996.

[405] Merlet J-P. Articular velocities of parallel manipulators, Part II:
Finding all the robots with fixed extremal articular velocity for per-
forming a fixed cartesian velocity over a whole workspace. In IEEE
Int.Conf. onRobotics and Automation, pages 3262–3267, Albuquerque,
April, 21-28, 1997.

[406] Merlet J-P. Designing a parallel manipulator for a specific workspace.
Int. J. of Robotics Research, 16(4):545–556, August 1997.

[407] MerletJ-P. Estimation efficace des caractéristiques de robots paralèlles:
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12–15, Québec, October, 3-4, 2002.

[644] Zabalza I. and others . A variant of a 6-RKS Hunt-type parallel
manipulator to easily use insensitivity position configurations. In
ARK, pages 291–300, Caldes de Malavalla, June 29- July 2, 2002.

[645] Zamanov V.B and Sotirov Z.M. Structures and kinematics of parallel
topology manipulating systems. In Proc. Int. Symp. on Design and
Synthesis, pages 453–458, Tokyo, July, 11-13, 1984.

[646] Zamanov V.B and Sotirov Z.M. A contribution to the serial and
parallel manipulator duality. In 8th World Congress on the Theory
of Machine and Mechanisms, pages 517–520, Prague, August, 26-31,
1991.

[647] Zamanov V.B and Sotirov Z.M. Parallel manipulators in robotics. In
IMACS/SICE Int. Symp. on Robotics, Mechatronics, and Manufac-
turing Systems, pages 409–418, Kobe, September, 16-20, 1992.

[648] Zanganeh K.E. and Angeles J. Instantaneous kinematics and design
of a novel redundant parallel manipulator. In IEEE Int. Conf. on
Robotics and Automation, pages 3043–3048, San Diego, May, 8-13,
1994.

[649] Zanganeh K.E. and Angeles J. Kinematic isotropy and the opti-
mum design of parallel manipulators. Int. J. of Robotics Research,
16(2):185–197, April 1997.

[650] Zanganeh K.E., Sinatra R., and Angeles J. Kinematics and dynam-
ics of a six-degree-of-freedom parallel manipulator with revolute legs.
Robotica, 15(4):385–394, July - August , 1997.

[651] Zeid A.A., Overholt J.L., and Beck R.R. Modeling of multibody
systems for control using general purpose simulation languages. Sim-
ulation, 67(1):7–19, January 1994.

[652] Zhang D. and Gosselin C.M. Kinetostatic modeling of N-DOF parallel
mechanisms with a passive constraining leg and prismatic actuators.
ASME J. of Mechanical Design, 123(3):375–384, September 2001.

379

[640] Yoshikawa T. Manipulability of robotic mechanisms. Int. J. of Ro-
botics Research, 4(2):3–9, 1985.



REFERENCES

[653] Zhang D. and Gosselin C.M. Parallel kinematic machine design with
kinetostatic model. Robotica, 20(4):429–438, July 2002.

[654] Zhang D. and others . Optimum design of parallel kinematic tool-
heads with genetic algorithm. Robotica, 22(1):77–84, January 2004.

[655] Zhang M.D. and Song S.M. Study of three-degree-of-freedom parallel
platforms for reactional compensation. In ISRAM, pages 373–378,
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A

A∗, 253
AACTS, 68
ABB, 2, 31, 34
absolute conic, 107
acceleration

active wrist, 174
angular, 173
cartesian, 173
joint, 173
maximal, 173
6-PUS, 174
6-UPS, 174

accommodation matrix, 274
accuracy, 163, 175–177

absolute, 3
indices, 165
parallel robot, 171
repeatability, 3

accuracy point, 250
active stiffness, 267
active wrist INRIA, 51, 93
actuator, 30

double linear, 57
electrical, 49
hydraulic, 66, 75
linear, 5
magnetostrictive, 75
piezo-electric, 86
pneumatic, 49, 274
rotary-linear, 57
twisting, 68

Adept, 2
ADS, 71
agile eye, 36
Ai, xvii
AI Group, 92
Airbus, 78, 91
Alio, 86
antenna, 71, 275
application, 40, 49, 50, 70–93
Appolo, 71

appropriate design, 303
architectural singularity, 181
architecture, 19, 27–62
area of workspace, 231
Argos, 37
articulated octahedron, 93
Artisan, 40
aspect, 210, 218
assembly mode, 105
Assur, 21
August, 68
auto-calibration, 290, 298

B

backlash, 4, 175
balancing, 40, 274–275

dynamic, 279
ball-screw, 49
bandwidth, 74, 267, 277
barycentric coordinates, 139
base inertial parameters, 278
Bennet, 15
Bezout, 107, 127
Bi, xvii
binary robot, 64
Boeing, 71
bond-graphs, 302
bone, 77
Borel, 5, 208
box, 325
BRAID, 65
Bricard, 5, 208
building, 68
Burmester, 128

C

CAE, 10
calibration, 289–300

auto, 290, 298
constrained, 290
external, 290
Hexa robot, 300
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CaPaMan, 43
Cappel, 10
car painting, 32
Cardan, 15
Caren, 77, 79
carpal wrist, 40
Cauchy, 5
Cayley, 113
cell, 250–252
centrifugal, 278
CERT-DERA, 49
chain

generic, 111
PUS, 51
RRPaR, 31
RRPS, 34
RUS, 52
spherical, 36
UPS, 48

characteristic length, 166
characteristic tetrahedron, 192
Charlotte, 71
Chasles, 208
Cinaxe, 93
circularity, 107

4-bar mechanism, 106
RSSR, 114

CKCM, 71
CLDK algorithm, 145
clearance, 3, 171, 175, 191, 209
closed-loop, 5
closure equation, 162
CMW, 84
CNRS, 84
Comau, 34, 82
complex, 188

general, 188
non singular, 188
singular, 188

compliance, 11, 259, 267
active, 12, 269
matrix, 267
passive, 12, 269

computation time
direct kinematics, 143
dynamics, 286
jacobian, 163

computational geometry, 216
condition number, 165, 205, 209, 307
conditioning, 163–171, 204–206

congruence, 188
degenerate, 188
elliptic, 188
hyperbolic, 188
parabolic, 188

conjugacy, 23
connection degree, 4
constrained calibration, 290
constraint singularity, 181, 191
container, 68
continuation, 145, 218, 321
control

direct kinematics, 140
error, 163
force-feedback, 269
instability, 270
PID, 277
position, 95
singularity, 181, 209
stiffness, 274
velocity, 105, 155

convexity
and singularity, 185
direct kinematics, 121

cooperation, 12
coordinates

generalized, xvii, 1
homogeneous planar, 107
joint, xvii, 12
Study, 95

Copra, 91
Coriolis, 8, 278
cost function, 305
counterweight, 275
coupler, 106
coupler curve, 106, 128

intersection, 224
crane, 68, 289
Crigos, 75
CSA, 74
CSEM, 71
cylindrical motion, 43

D

DARTS, 68
DBB, 293, 296
decoupled robot, 51, 59–62, 124
definition, 12
degree of connection, 4
degree of freedom, 1
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in singularity, 201
Delta, 31

acceleration, 173
applications, 88
calibration, 300
Cube, 32
design, 305
direct kinematics, 112
inverse dynamics, 288
linear, 32
singularity, 211

DeltaLab, 93
Demaurex, 31
design, 301–320

appropriate, 303
examples, 318
4-bar mechanism, 308
joint velocity, 311
methodology, 313
optimal, 302
planar robot, 309
spherical robot, 309

determinant
inverse jacobian, 211
inverse jacobian SSM, 163

dexterity, 163
index, 165

dextrous workspace, 214, 222, 240
controllably, 214

direct dynamics, 277, 278
direct kinematics, 105–149

4-4 robot, 126
5-3 robot, 150
5-4 robot, 124
5-5 robot, 124
6-3 robot, 124
6-4 robot, 123
6-5 robot, 123
6-UPS robot, 128
7-7 robot, 133
8-8 robot, 133
9-9 robot, 132
accuracy, 136, 148
active wrist, 121
computation time, 143
convergence, 140
Delta, 112
Gröbner basis, 129
Hexa, 151
INRIA wrist, 120

interval analysis, 129
iterative methods, 136
MSSM, 121
noise, 144
numerical methods, 136
parallel implementation, 139
polynomial form, 108
PPP-3S robot, 122
PPR-3S robot, 122
PRR-3S robot, 122
real-time, 140
rotation wrist, 130
6-PUS robot, 121
SSM, 123, 127
Stewart platform, 121
TSSM, 114
W0 robot, 150
with extra sensors, 145
Zhang, 127

direct tolerance, 26
direct-drive, 3
dish, 71
Disney, 92
distance

between links, 237
Lagrange identity, 121
safety, 238
to a singularity, 204–206

divergence, 231
DNAT, 65
Dockwelder, 40
double tripod, 55
dual quaternions, 128
duality, 119
Dymo, 16, 38
dynamic balancing, 279
dynamics, 277–288

computation time, 286
direct, 278
examples, 286
Hamilton, 278
index, 279
inverse, 278
Lagrange, 278
Newton-Euler, 278
parameters identification, 277
virtual work, 278

Dynamil, 86
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E

earthquake, 8, 93
EasyTeach, 68
Eclipse, 59
8-8 robot, 133
electrical actuator, 49
elimination, 128, 322
ellipsoid

flexibility, 274
force, 261
manipulability, 163
resistivity, 263

end-effector, 1
endoscope, 77
Energen, 75
energy, 7
EPFL, 31
Epson, 2
equilibrium, 181, 275, 282
equivalent mechanism, 113

TSSM, 113
ESRF, 86, 318
Euler angles, xvii
EX 800, 93
exact synthesis, 309
external calibration, 290
extremum

joint coordinates, 103
joint force, 260
joint velocities, 173
stiffness, 273
twist, 172
wrench, 260

F

F , xviii
F-200i, 88
failure, 62, 320
Falcon, 68
Fanuc, 2, 68, 88
FCS, 91
FGB, 323
FIKP, 153
5-5 robot, 124
5-4 robot, 124
flexibility ellipsoid, 274
flexible

joint, 30, 50, 54
link, 44, 260

FlexPicker, 31
flexure hinge, 29, 30, 32
flight simulator, 8, 44, 77–78
Flight-Avionics, 92
Flying Carpet, 68
food, 90
force,

see joint or wrench
force ellipsoid, 261
force sensor, 266
force transmission index, 265
force-feedback, 269
4-bar mechanism, 42, 54, 106

circularity, 106
coupler curve, 106
design, 308

4-4 robot, 126
Freudenstein, 21
friction, 4, 171
ftp, xv
F206, 66, 86
full inverse jacobian, 155

G

Gadfly, 50
Gauss, 231
GCI index, 170, 307
GEC, 34
generalized coordinates, xvii
generalized polygon, 235
geometry

computational, 216
Grassmann, 185

Georg V, 34
Giddings & Levis, 80
global conditioning index, 169
Goddard, 71
Goldberg, 15
Googol, 28
Gough, 5
Grübler, 14
graph

theory, 21
visibility, 254

Grassmann, 186
Grassmann geometry, 185–189

congruence, 188
line, 187
linear complex, 188
plane, 187
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point, 187
Grassmann-Cayley, 156
gravity, 71, 176
Gröbner basis, 127, 129, 323
group

motion, 21
theory, 23
translations, 22

H

Hagenbuch, 75
Half, 43
Hana, 43
haptic device, 91
HCCM, 90
Hephaist Seiko, 28, 30, 86
Hexa, 53

calibration, 300
direct kinematics, 151
singularity, 212
workspace, 257

Hexabot, 88
Hexaglide, 51
Hexamove, 75
hexapod, 48
Hexel, 88
H4, 44
hinge, 29, 30
HITA-STT, 44
homogeneous coordinates, 107
homotopy, 128, 321
horse riding, 79
HP1, 34
HR 4, 86
Hughes Stx, 58
Hunt, 192
hydraulic actuator, 66, 75, 78

control, 78
hyperboloid, 187

I

identification
dynamics, 277

identification jacobian, 294
I4, 44

calibration, 296
IIKP, 153
Ilizarov, 77
ILL, 88

imaginary circle, 107
imaginary circular points, 107
implicit loop formulation, 294
INA, 30
inclusive orientation workspace, 214,

226
increased instantaneous mobility, 180
index

conditioning, 163
dexterity, 165
force transmission, 265
global conditioning, 169
manipulability, 165
mobility, 14
parallelism, 93
singularity, 204
workspace, 245

inertia, 4, 279
infinitesimal motion, 180, 202–204
inflation, 142
INRIA active wrist, 51
instantaneous rotation axis, 202
interference between links, 220, 237
internal sensor, 3
intersection

coupler curve, 224
joint, 22
links, 220, 237

interval analysis, 129, 171, 207, 263,
314, 325–330

inverse dynamics, 277, 278
inverse jacobian, 153

determinant, 163
Euler angles, 155
full, 155
kinematic, 156
overall, 155
6-PUS, 161
6-UPS, 160
3-PUS, 159
3-UPU, 158

inverse kinematics, 95–102
6-PUS, 100
6-RUS, 101
6-UPS, 99
3-UPU, 98, 104

inverse tolerance, 26
IRA, 202
IRB 340, 31
IRB940, 34
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Iron cross, 8
ISIS, 75
iso-stiffness, 270

curve, 270
surface, 273

isotropic pose, 169
isotropic robot, 169
isotropy, 163
ITER, 47

J

jacobian, 162
analytic formulation, 163
identification, 294
inverse, 153
iterative, 171
kinematic, 162
number of terms, 163
of a SSM, 162
practical computation, 163

joint
Cardan, 15
composition, 22
deformable, 30
direction influence, 236
flexible, 30, 50, 54
layout, 244, 302
mechanical limits, 220, 233, 305
modeling, 234
parallelogram, 59
prismatic, 1
revolute, 1
S, 29, 61, 234

double, 50
multiple, 30
skew axis, 30
triple, 51, 61

U , 15
joint acceleration, 173
joint coordinates, xvii, 12, 95

calculation, 95
extremum, 103

joint force, 259
extremum, 260, 261
extremum in a pose, 261
in a singularity, 211
iterative scheme, 260
← wrench, 259
→ wrench, 259

joint velocities, 171

→ twist, 171
in design, 311
←twist, 156, 171

joystick, 91

K

Kantorovitch, 141
kinematic branches, 182
kinematic chain

closed-loop, 5
open-loop, 5
simple, 5

kinematic mapping, 95
kinematics,

see inverse kinematics,
see direct kinematics

kinematics polyhedron, 164
kinetostatic indices, 265
Kuka, 2

L

LAAS, 115
Lagrange, 121, 280

multiplier, 280
landing gear, 71
Lebesgue, 5
left hand

INRIA, 50
stiffness, 270
workspace, 230

Lie group, 21
Limbro, 55
Linapod, 32, 51
line

Plücker vector, 185
skew, 187

linear actuator, 7
linear complex, 188
linear Delta, 32
link

beam model, 268
distance, 237
elastic model, 267
flexible, 44, 260
inertia, 279
interference, 220, 237

LIRMM, 52, 62
LM, 71
LME, 86
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Logabex, 63
lumped model, 260
lunar module, 71

M

Mach21, 86
machine-tool, 80–86

CMW 380, 84
Comau Urane SX, 82
Cross Hüller Genius 500, 82
DiGiHex, 83
DR Mader, 84
DS Technology Sprint Z3, 82
Eclipse, 59
Greif, 84
Hexaglide, 51
Index V100, 82
Ingersoll, 84
Kovosvit Mas Trijoint 900H, 82
Krauseco/Mauser HS500, 82
Metrom P800

P2000, 83
Mikromat 6X, 84
Multicraft 560, 84
Octahedral Hexapod, 84
Okuma PM-600, 84
Orthoglide, 33
Reichenbacher Pegasus, 84
Savelovo Hexamech-1, 84
SMT Tricept, 34
Starrag-Heckert SKM 400, 82
Triax, 83
Variax, 80
workspace, 242

manipulability ellipsoid, 163
manipulability index, 165, 205, 308
manufacturing tolerance, 26, 175
Map, 302
MARS, 75
MAST, 7
mastication, 77
matrix

inertia, 281
inverse jacobian, 153, 171
jacobian, 162
norm, 165
rotation, xvii
stiffness, 267

maximal workspace, 214, 223, 226,
240

Mazor, 75
MBARS, 76
measuring machine, 68, 90
mechanical limits, 220, 233
mechanism

Bennet, 15
equivalent, 113
4-bar, 106
Goldberg, 15
redundant, 12

medical, 40, 75–77, 256
MEL, 236
MEMS, 66
M-850, 86
M-840, 86
Micos, 86
micro-positioning, 66
micro-robot, 4, 50, 56

dynamics, 279
joints, 30
workspace, 218

MicroMega, 74
microscope, 75
milling machine, 10, 80
minimal kinematic set, 154
Mips, 40, 77
mobility, 43

formula, 14
index, 14

modular robots, 50
calibration, 289

Moog, 92
Motek, 77, 79
motion

infinitesimal, 180
parasitic, 20
Schönflies, 22, 44

motion group, 21
generator, 22

motion planning, 249–257
movie theater, 93
MPE, 170
MSSM, 93

direct kinematics, 114, 121
dynamics, 279
singularity, 191

munition loader, 93

N

Nabla 6, 51, 61
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direct kinematics, 151
NADS, 78
NAF3, 28, 86
nanopod, 133
NAOS, 71
NASA, 36, 43, 71
natural length, 166
Neos Robotics, 34
Newton method, 136–141
Ninja, 58
NIST, 68
noise amplification index, 300
nominal load

parallel robot, 7
serial robot, 2

notation, xvii

O

observability, 291
observation matrix, 291
octahedra, 43
octopod, 75
off-shore, 10
Omega, 91
Ω, xvii
Omni-Wrist, 39
open-loop, 5
operating point, 153, 213, 259
optics, 86, 87
optimal design, 302
orientation

interval, 226, 227
representation, xvii, 129, 214
workspace, 214, 239

Orion, 40
Orthoglide, 33, 208
overall inverse jacobian, 155
overconstrained, 14, 39

P

packaging, 90, 91
palm tree, 93
Pantoscope, 37
paradoxical, 15, 24
parallelism index, 13
parallelogram, 31, 57, 59, 145, 275
parasitic motion, 20, 26
Paros, 86
part positioning, 256

partitioning, 210
passive stiffness, 267
path planning, 209, 249–257
Persival, 79
PH1, 74
PHEX1, 74
φ, xvii
Phoenix, 91
Physik Instrumente, 86
pick-and-place, 11, 50, 90, 277
piezo-electric actuator, 50
pitch, 202, 203
Plücker vector, 185

normalized, 185
planar robot, 27

3D workspace, 251
architecture, 27
balancing, 275
design, 309, 320
determinant inverse jacobian, 211
dextrous workspace, 222
direct kinematics, 105
generic chain, 111
inverse jacobian, 157
inverse kinematics, 97
maximal workspace, 223
mobility, 14
motion planning, 251
redundant, 29
singularity, 189
stiffness matrix, 267
3-PPR, 103
3-PRP, 104
3-PRR, 28, 257
3-RPP, 103
3-RPR, 28, 189, 219, 221–223
3-RRP, 103
3-RRR, 28, 190, 257

pneumatic actuator, 49, 274
compliance, 274

pointing, 36
Pollard, 11
polygon

generalized, 235
polyhedron

kinematics, 163
wrench, 263

position control, 96
positioning device, 86–88, 318
post optimality analysis, 307
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PPP-3S, 122
PPR-3S, 122
PRR-3S, 122
PRRS, 22
ψ, xvii
PSSR, 122
PUS, 51
pyramid, 234

Q

quaternions, 129, 250
dual, 128

R

R, xvii
rank theorem, 182
RCC, 269
reachable workspace, 214, 223, 226,

240
real-time, 140
reciprocal screw, 157
reciprocity, 24
reconfigurable robot, 50
reconstruction, 251
reduced total orientation workspace,

214
redundancy, 12, 29, 33, 37, 55, 62,

210, 298
actuation, 62
kinematic, 62
measurement, 62

regulus, 187
complementary, 187

rehabilitation, 77, 79
reliability, 320
repeatability, 3, 86
resistivity ellipsoid, 263
resultant, 116, 322
Rexroth Hydraudine, 92
roadmap, 250, 254
Robea, 84
Robocrane, 68
robot

binary, 64
decoupled,

see decoupled robot
fast parallel, 52
5 d.o.f., 45–47
4 d.o.f., 43–44

fully parallel, 13
general parallel, 12
hybrid, 34
isotropic, 169
modular, 50
movie theater, 93
overconstrained, 14
parallel, 13
parallel fast, 31
planar,

see planar robot
PRR-3S,

see active wrist
reconfigurable, 50
redundant, 29, 33, 37, 55, 62
serial, 1
6 d.o.f., 48–62
spherical,

see spherical robot
3 d.o.f., 27–29, 31–43
wires,

see wire robot
Robotool, 86
ρi, xvii
ρmax, xvii
Romed, 76
ρmin, xvii
rotation

matrix, xvii
parameters, xvii, 129
quaternions, 129
representation, 214

Rotobot, 53
RPRS, 22
RRPS, 22, 34
RRR-3S, 122
RRRS, 22
RSSP, 122
RSSR, 113

circularity, 114
RUS, 52

S

Sacso, 69
safety distance, 238
SAGE III, 73
SALSA, 88, 318
sampling, 140, 170, 217, 286
Scara, 2
Schönflies, 22, 44
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screening, 91
screw, 24, 43, 185, 203, 250
search space, 313
Segesta, 68
Seiko, 2
self-calibration, 290
self-motion, 209
sensor, 3

accuracy, 175
extra, 145
force, 266
internal, 3
layout, 146

serial robot, 1
Servos Simulation, 53
7-7 robot, 133
sextic, 106, 108, 223, 224
shake table, 7
shakiness, 209
Sheldon, 82, 301
ship loading, 68
Sikorsky, 10
simulation, 301, 302
simulator, 11, 77–79

flight, 8, 44, 77
singularity, 179

and convexity, 185
architectural, 181, 208
aspect, 210
avoidance, 209
classification, 208
constraint, 181
control, 181, 209
definition, 182
degree of freedom, 201
distance to, 204
Hexa, 212
in a volume, 206
indices, 204
joint forces, 211
MSSM, 191
partitioning, 210
path planning, 209
permanent, 86, 208
planar robot, 189
redundant input, 180
redundant output, 181
redundant passive motion, 181
search for, 206
stratification, 208

structural, 208
singularity-free

design, 306
region, 185, 218
trajectory, 135, 209
workspace, 206

6-5 robot, 123
6-4 robot, 123
6-PUS robot

acceleration, 174
accuracy, 175
direct kinematics, 121
dynamics, 285
INRIA, 51
inverse jacobian, 161
inverse kinematics, 100
stiffness, 268, 270
velocities, 161, 178
workspace, 257

6-RUS robot
inverse kinematics, 101

6-3 robot, 124
6-UPS robot, 48

acceleration, 174, 178
accuracy, 175
balancing, 275
determinant inverse jacobian, 185
direct kinematics, 128
dynamics, 278, 281
extremum of the stiffness, 273
inverse jacobian, 155, 160
inverse kinematics, 99
iso-stiffness, 272
jacobian, 162
joint forces, 261
maximal load, 275
singularity, 206
slender, 272
stiffness, 267
velocities, 160
workspace, 229, 231, 239

skew line, 187
SkyCam, 69
Smaps, 302
Smartee, 58
Space, 49
space shuttle, 40
SpaceFab, 86
spatial application, 71–73
Speed-R-Man, 33
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spherical robot, 36
design, 309
direct kinematics, 124
inverse kinematics, 104
redundant, 37

Spine Assist, 75
spreaddand, 30
SSM, 93
Star, 32, 37
Star Tours, 92
static, 259–266
Stewart, 8
Stewart platform, 8, 10

direct kinematics, 121
stick and slip, 56
stiffness, 267–274

active, 267
control, 274
extremum, 273
map, 270
matrix, 267
passive, 267

stiffness matrix, 267–268
Study, 95
Sturm, 111
Surgiscope, 75
SWF6, 86
synchrotron, 86
synthesis

architectural, 19–26
dimensional,

see design
Synthetica, 302, 310

T

TACOM, 78
Taguchi, 306
τ , xviii
telescope, 71, 318
θ, xvii
Tetrabot, 34
tetrahedron, 251
thermal, 176, 319
Thomson, 78
3-CRR robot, 33
3-PPR planar robot

inverse kinematics, 103
3-PRP planar robot

inverse kinematics, 104
3-PRR planar robot

dextrous workspace, 257
orientation workspace, 257
workspace, 257

3-PUS robot
inverse jacobian, 159

3-RPP planar robot
inverse kinematics, 103

3-RPR planar robot, 28
design, 309
dextrous workspace, 222
direct kinematics, 108
inverse jacobian, 157
joint forces, 276
maximal workspace, 223
singularity, 189, 211
stiffness matrix, 267
workspace, 219, 221

3-RRP planar robot
inverse kinematics, 103

3-RRR planar robot, 28
dextrous workspace, 257
maximal workspace, 257
orientation workspace, 257
singularity, 190
velocities, 177
workspace, 257

3-RS, 113, 119
3-UPU robot, 34

accuracy, 176
direct kinematics, 113
inverse jacobian, 158
inverse kinematics, 98
optimal design, 305
singularity, 190
workspace, 228

3-URU robot, 37
tiling, 253
tilt and torsion, 214
TMBS, 79
tolerance, 175, 293
Toro, 50
Toshiba, 2
total orientation workspace, 214, 227
training, 93
trajectory

interference between links, 248
mechanical limits, 248
planning,

see motion planning
singularity-free, 209
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trajectory verification, 246–249, 258
constant orientation, 246
examples, 248
line segment, 246

translation workspace, 213
translator, 31
tree, 279
Triax, 83
Tricept, 34
tricircular, 106
tripod, 55
truss, 63–66

inverse kinematics, 104
TSSM, 93

direct kinematics, 114
standard, 117
with 16 assembly modes, 117

Turin robot, 58
Twice, 44
twist, 153

extremum, 172
2-Delta, 61

U

uncertain configuration, 180
unit sphere, 239
Universal Rig, 5
UPS, 48

V

Vaillant, 5, 208
Variax, 80, 301
velocity, 153
velocity control, 105, 155
velocity twist, 24
Vertex, 71
VES, 71
VGT, 63
vibration, 7, 68, 74–75, 86
Virtogo, 92
virtual reality, 69, 77
virtual work, 278
visibility graph, 254
VISS, 74, 75
VMS, 36
volume of workspace, 231

W

W, xvii

waste, 68
Web, xiv
Weierstrass substitution, 102
wire robot, 43, 68–69

calibration, 289
direct kinematics, 150
singularity, 181
stiffness, 267
workspace, 218

workspace, 213–244
3-RPR planar robot, 219
constant orientation, 219, 229
controllably dextrous, 214
cross-section area, 231
dextrous, 214, 222, 240
enlargement, 209
examples, 230
inclusive orientation, 214, 226
index, 245
interference between links, 220,

237
maximal, 223, 226, 242
orientation, 214, 221, 239
reachable, 214, 223
reduced total orientation, 214
3D, 231, 251
total orientation, 214, 227
translation, 213
types, 213
volume, 231

Wren, 5
wrench, 24, 259

extremum, 260, 265
← joint force, 259
→ joint force, 259

wrench polyhedron, 263
wrist

active, 93
carpal, 40
INRIA active, 51, 120
spherical, 36

X

X, xvii
{X(w)}, 22

Z

zero-gravity, 71
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Aims and Scope of the Series
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in answering these questions on the subject of mechanics as it relates to solids. The scope of the
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